3-mavzu. Birinchi tartibli differensial tenglamalar. Bernulli va oʻzgarmaslarni variatsiyalash usullari. Bernulli va klero tenglamalari



Download 83.22 Kb.
bet5/6
Sana31.10.2020
Hajmi83.22 Kb.
1   2   3   4   5   6
Taʼrif. x va y ga nisbatan chiziqli boʻlgan koeffitsiyentlari esa ning funksiyalari boʻlgan quyidagicha differensial tenglamaga



KLERO DIFFERENSIAL TENGLAMASI deyiladi.

Klero differensial tenglamasi Lagranj differensial tenglamasining xususiy holi hisoblanadi. Ushbu differensial tenglamani yechish algoritmi quyidagicha:







Oxirgi ifodani dx ga boʻlamiz







Birinchi yechim:

Ikkinchi yechim esa: parametrik tenglamalar sistemasini yechish orqali hosil qilinadi. Hosil boʻlgan F(x,y)=0 ikkinchi yechim ixtiyoriy oʻzgarmas sonni oʻz ichiga olmaydi va umumiy yechimdan ham C ning biror bir qiymati orqali hosil qilinmaydi, demak xususiy yechim emas. Bunday yechimlar maxsus yechim (integral) hisoblanadi. Shunday qilib Klero tenglamasining maxsus yechimi umumiy yechim (integral) bilan berilgan toʻgʻri chiziqlar oilasining egilish chizigini aniqlaydi, boshqacha qilib aytganda maxsus yechimning ixtiyoriy nuqtasiga oʻtqazilgan urinma ham differensial tenglama yechimi boʻladi.

https://upload.wikimedia.org/wikipedia/commons/b/b3/EnvelopeAnim.gif



Klero differensial tenglamasi koʻp hollarda analitik geometriyada 2-tartibli egri chiziqlarni qurish uchun ishlatiladi. Egri chiziqni uning urinmasiga qoʻyilgan xossalari boʻyicha aniqlaydigan geometrik masalalar Klero tenglamasiga olib keladi. Ushbu xossa aynan urinmaga tegishli boʻlib, urinadigan nuqtaga tegishli emas. Haqiqatdan ham urinma tenglamasi:

Urinmaning har qanday xossasi va oʻrtasidagi munosabat bilan aniqlanadi:



=0

Ushbu tenglamani ga nisbatan yechilsa, aynan



Klero tenglamasiga kelamiz.


Download 83.22 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
axborot texnologiyalari
o’rta maxsus
davlat pedagogika
nomidagi toshkent
guruh talabasi
pedagogika instituti
texnologiyalari universiteti
toshkent axborot
xorazmiy nomidagi
samarqand davlat
navoiy nomidagi
rivojlantirish vazirligi
haqida tushuncha
toshkent davlat
ta’limi vazirligi
nomidagi samarqand
vazirligi toshkent
Darsning maqsadi
Toshkent davlat
tashkil etish
Alisher navoiy
kommunikatsiyalarini rivojlantirish
Ўзбекистон республикаси
matematika fakulteti
bilan ishlash
pedagogika universiteti
Nizomiy nomidagi
sinflar uchun
fanining predmeti
таълим вазирлиги
o’rta ta’lim
maxsus ta'lim
fanlar fakulteti
ta'lim vazirligi
tibbiyot akademiyasi
vazirligi muhammad
махсус таълим
Toshkent axborot
umumiy o’rta
haqida umumiy
Referat mavzu
ishlab chiqarish
pedagogika fakulteti
fizika matematika
universiteti fizika
Navoiy davlat