§. Natural va butun sonlar



Download 0.76 Mb.
bet37/72
Sana22.09.2019
Hajmi0.76 Mb.
1   ...   33   34   35   36   37   38   39   40   ...   72


A) x2 B)(x2 + 4)/(x – 2) C) –(x+2) D) x+2

49. ifodanisoddalashtiring.( xϵ(– 1; 1) )

A) x– 2B)(x2 + 4)/(x – 2) C) –(x+2) D) x+2

50. ifodanisoddalashtiring. ( xϵ(1; 2) )

A) x– 2 B)(x2 + 4)/(x – 2)C) –(x+2) D) x+2

51. ifodanisoddalashtiring. ( xϵ(2; ∞) )

A) x– 2 B)(x2 + 4)/(x – 2) C) –(x+2) D) x+2

52. ifodanisoddalashtiring. ( xϵ(– ∞; – 1) )



A)x/(x – 1) B) x/(1 – x) C) – x/(x + 1) D) x/(x + 1)

53. ifodanisoddalashtiring. ( xϵ(– 1; 0) )

A) x/(x – 1) B) x/(1 x) C) – x/(x + 1) D) x/(x + 1)

54. ifodanisoddalashtiring. ( xϵ[0; 1) )

A) x/(x – 1) B) x/(1 – x) C) – x/(x + 1) D) x/(x + 1)

55. ifodanisoddalashtiring. ( xϵ(1; ∞) )

A) x/(x – 1) B) x/(1 – x) C) – x/(x + 1)D) x/(x + 1)

56. ifodanisoddalashtiring. ( xϵ(– ∞; 2) )



A) x2 – 4x12 B) (x+2)2 C) x2 – 4x+12 D)x2 + 4x+12

57. ifodanisoddalashtiring. ( xϵ(2; ∞) )

A) x2 – 4x–12B) (x+2)2 C) x2 – 4x+12 D)x2 + 4x+12

58. ifodanisoddalashtiring. ( xϵ(–∞; 0) )



A)– 1/x B) 1/x C)x D)–x

59. ifodanisoddalashtiring.( xϵ(0; 1) )



A) – 1/x B) 1/x C)x D)– x

60. ifodanisoddalashtiring.( xϵ(1; 2) )



A)– 1/x B) 1/x C)x D)– x

61. ifodanisoddalashtiring. ( xϵ(2; 3) )

A)– 1/xB) 1/x C)x D)– x

62. ifodanisoddalashtiring.( xϵ(3; ∞) )

A)– 1/xB) 1/x C)x D)– x

63. ifodanisoddalashtiring.( xϵ( – ∞; – 3) )



A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3)

64. ifodanisoddalashtiring. ( xϵ(– 3; – 1) )



A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3)

65. ifodanisoddalashtiring. ( xϵ(–1; 2) )



A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3)

66. ifodanisoddalashtiring.( xϵ(2; ∞) )

A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3)

67. ifodanisoddalashtiring. ( xϵ(– ∞; 0) )



A) B) C) D)

68. ifodanisoddalashtiring.( xϵ(0; 1) )



A) B) C) D)

69. ifodanisoddalashtiring. ( xϵ[ 1; ∞) )



A) B)C) D)

70. ifodanisoddalashtiring.( xϵ(– ∞; 0) )



A) B) C) D)

71. ifodanisoddalashtiring.( xϵ[ 0; 1/3) )



A) B) C) D)

72. ifodanisoddalashtiring.( xϵ(1/3; 1) )



A) B) C) D)

73. ifodanisoddalashtiring. ( xϵ(1; ∞) )



A) B)C) D)

74. ifodanisoddalashtiring.( xϵ( – ∞; – 3/2) )



A) B) C) D)

75. ifodanisoddalashtiring.( xϵ(– 3/2; 0) )



A) B) C) D)

76. ifodanisoddalashtiring.( xϵ(0; 3) )



A) B) C) D)

77. ifodanisoddalashtiring.( xϵ(3; ∞) )



A) B)C) D)

78. |−abc| = −abc, |a−b| = −b + a va |−b| = b bo’lsa, quyidagilardan qaysi biri har doim o’rinli.


A) b<0 B) 0 C) c<0 D) b
79. funksiyaning eng katta qiymatini toping
A) 9 B) 12 C) 15 D) 24




  1. Download 0.76 Mb.

    Do'stlaringiz bilan baham:
1   ...   33   34   35   36   37   38   39   40   ...   72




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
o’rta maxsus
davlat pedagogika
axborot texnologiyalari
nomidagi toshkent
pedagogika instituti
texnologiyalari universiteti
navoiy nomidagi
samarqand davlat
guruh talabasi
ta’limi vazirligi
nomidagi samarqand
haqida tushuncha
toshkent axborot
toshkent davlat
Darsning maqsadi
xorazmiy nomidagi
Toshkent davlat
vazirligi toshkent
tashkil etish
Alisher navoiy
Ўзбекистон республикаси
rivojlantirish vazirligi
matematika fakulteti
pedagogika universiteti
sinflar uchun
Nizomiy nomidagi
таълим вазирлиги
tibbiyot akademiyasi
maxsus ta'lim
ta'lim vazirligi
bilan ishlash
o’rta ta’lim
махсус таълим
fanlar fakulteti
Referat mavzu
umumiy o’rta
Navoiy davlat
haqida umumiy
Buxoro davlat
fizika matematika
fanining predmeti
universiteti fizika
malakasini oshirish
kommunikatsiyalarini rivojlantirish
davlat sharqshunoslik
jizzax davlat