1.
1
√1.12
≈ −?
2.
1
0
1 cos
x
dx
x
3.
( )
4
3
f x
x
funksiyani Furʼye qatoriga
x
[-
5
;
5
] oraliqda yoying
Вариант 2.
1.
𝑓(𝑥) =
1
1 − 3𝑥 + 2𝑥
2
; 𝑓 (
√2
4
) ≈ −?
2.
1
0
ln 1
x
dx
x
3.
( )
2
3
f x
x
funksiyani Furʼye qatoriga
x
[-
3
;
3
] oraliqda yoying
Вариант 3.
1.
𝑓(𝑥) =
1
1 − 4𝑥 + 3𝑥
2
; 𝑓 (
√2
7
) ≈
2.
0,2
0
sin
x
dx
x
3.
( )
f x
x
funksiya Furʼye qatoriga
x
[
1
;
3
] oraliqda yoyilsin
Вариант 4.
1.
𝑓(𝑥) =
1
1 − 5𝑥 + 6𝑥
2
; 𝑓 (
√3
8
) ≈ −?
2.
0,1
0
1
x
e
dx
x
3.
( ) 10
f x
x
funksiya Furʼye qatoriga
x
[-
5
;
15
] oraliqda yoyilsin
Вариант 5.
1.
𝑓(𝑥) =
1
1 − 6𝑥 + 8𝑥
2
; 𝑓 (
√5
10
) ≈
2.
0,5
2
0
ln 1
x
x
dx
3.
( )
5
1
f x
x
funksiyani Furʼye qatoriga
x
[
3
;
3
] oraliqda yoyilsin
6-Variant
1.
2
0.3
≈ −?
2.
3
/
1
0
2
dx
e
x
3.
x
0
bo‘lganda
2
f x
x
bo‘lgan funksiya
x
(-π; π) intervalda
Furye qatoriga yoyilsin.
7-Variant
1.
ln (1.12) ≈ −?
2.
6
/
1
0
3
2
1
dx
x
3.
f(x)=1 funksiya
x
(0; π) intervalda sinuslar bo‘yicha Furye qatoriga
yoyilsin; undan foydalanib
...
7
1
5
1
3
1
1
qatorning yig’indisi
topilsin.
8-Variant
1.
𝑒
0.2
≈ −?
2.
5
,
0
0
2
4
cos
dx
x
3.
f(
x
)=
x
2
funksiyaning Furye qatoridan foydalanib
...
4
1
3
1
2
1
1
2
2
2
qatorning yig’indisi topilsin
9-Variant
1.
𝑠𝑖𝑛12
0
≈ −?
2.
1
0
sin
dx
x
x
3.
4
12
)
(
2
2
x
x
f
funksiya
x
(-π; π) intervalda Furye qatoriga yoyilsin.
10-Variant
1.
𝑐𝑜𝑠11
0
≈ −?
2.
1
0
2
dx
e
x
3.
0
x
bo‘lganda
2
)
(
x
x
f
,
x
0
bo‘lganda
2
)
(
x
x
f
bo‘lgan funksiya
x
(-π; π) intervalda Furye qatoriga yoyilsin.
11-Variant
1.
𝑡𝑔7
0
≈ −?
2.
4
0
2
)
sin(
dx
x
3.
0
x
bo‘lganda
x
x
f
)
(
,
x
0
bo‘lganda
0
)
(
x
f
bo‘lgan
funksiya
(
, )
x
intervalda Furye qatoriga yoyilsin.
12-Variant
1.
𝑠ℎ(0.12) ≈ −?
2.
5
,
0
0
dx
e
x
3.
0
x
bo‘lganda
1
)
(
x
f
,
x
0
bo‘lganda
2
)
(
x
f
funksiya
(
, )
x
intervalda Furye qatoriga yoyilsin.
13-Variant
1.
𝑐ℎ(0.21) ≈ −?
2.
0,5
0
arctgx
dx
x
3.
2
)
(
x
x
f
bo‘lgan funksiya
x
(0; π) intervalda sinuslar bo‘yicha qatorga
yoyilsin
14-Variant
1.
ln (1.12) ≈ −?
2.
1
0
cos
dx
x
3.
x
x
f
2
cos
)
(
bo‘lgan funksiya
x
(0; π) intervalda sinuslar bo‘yicha
qatorga yoyilsin.
15-Variant
1.
𝑎𝑟𝑐𝑡𝑔
1
√3
=
𝜋
6
ekanligidan foydalanib
𝜋
ni qiymatini
𝜀 = 0.0001
xatolik
bilan darajali qator yordamida hisoblang.
2.
25
,
0
0
)
1
ln(
dx
x
3.
x
x
f
sin
)
(
bo‘lgan funksiya
x
(0; π) intervalda kosinuslar bo‘yicha
qatorga yoyilsin.
16-Variant
1.
ln (4) ≈ −?
2.
1
0
4
2
dx
e
x
3.
x
e
x
f
)
(
funksiya
x
(-l; l) intervalda Furye qatoriga yoyilsin.
17-Variant
1.
arctg(0.4) ≈ −?
2.
2
,
0
0
1
sin
dx
x
x
3.
x
x
f
2
)
(
funksiya
x
(0;1) intervalda sinuslar bo‘yicha qatorga yoyilsin.
18-Variant
1.
6
40
-?
2.
5
,
0
0
4
1
1
dx
x
3.
x
x
f
)
(
bo‘lgan funksiya
x
(0;
l
) intervalda sinuslar bo‘yicha qatorga
yoyilsin.
19-Variant
1.
√120
3
≈ −?
2.
1
0
)
1
ln(
dx
x
x
3.
1
0
x
bo‘lganda
x
x
f
)
(
,
2
1
x
bo‘lganda
x
x
f
2
)
(
bo‘lgan
funksiya
x
(0 ;2) intervalda sinuslar bo‘yicha qatorga yoyilsin.
20-Variant
1.
50
2.
1
0
)
1
ln(
dx
x
x
3.
x
bo‘lganda
x
x
f
)
(
bo‘lgan funksiya
x
(-π ; π) intervalda
Furye qatoriga yoyilsin.
21-Variant
1.
(1.23)
18
≈ −?
2.
1
0
1
1
ln
dx
x
x
3.
0
x
bo‘lganda
x
x
f
)
(
,
x
0
bo‘lganda
x
x
f
)
(
, bo‘lgan
funksiya
x
(-π ; π) intervalda Furye qatoriga yoyilsin.
22-Variant
1.
3
2.24
≈ −?
2.
1
0
cos
dx
x
x
3.
0
x
bo‘lganda
1
)
(
x
f
,
x
0
bo‘lganda
1
)
(
x
f
, bo‘lgan
funksiya
x
(-π ; π) intervalda Furye qatoriga yoyilsin.
23-Variant
1.
4
1.18
≈ −?
2.
1
0
1
dx
x
3.
2
)
(
x
x
f
, b o‘lgan funksiya
x
(-π ; π) intervalda Furye qatoriga
yoyilsin.
24-Variant
1.
(0.84)
15
≈ −?
2.
1
0
arctgx
dx
x
3.
0
x
bo‘lganda
0
)
(
x
f
,
x
0
bo‘lganda
x
x
f
)
(
, bo‘lgan
funksiya
x
(-π ; π) intervalda Furye qatoriga yoyilsin.
25-Variant
1.
5
2.16
≈ −?
2.
5
,
0
0
2
)
sin(
dx
x
3.
1
0
x
bo‘lganda
x
x
f
)
(
,
2
1
x
bo‘lganda
x
x
f
2
)
(
, bo‘lgan
funksiya
x
(0 ; 2) intervalda kosinuslar bo‘yicha qatoriga yoyilsin.
26-Variant
1.
√29
4
2.
∫ 𝒙 ∗ 𝒆
−𝒙
𝟐
𝒅𝒙
𝟏
𝟎
3.
2
0
x
bo‘lganda
x
x
f
)
(
, bo‘lgan funksiya Furye qatoriga yoyilsin.
27-Variant
1.
√1.35 ≈
2.
2
1
0
2
dx
e
x
3.
x
x
f
)
(
, bo‘lgan funksiya
x
[0 ; π] intervalda sinuslar bo‘yicha qatorga
yoyilsin.
28-Variant
1.
993
,
0
2.
1
0
2
1
dx
x
3.
x
x
f
)
(
, funksiyani
x
[0; π] oraliqda kosinuslar bo‘yicha qatorga
yoyilsin.
Do'stlaringiz bilan baham: |