Делением называется реакция расщепления атомного ядра (обычно тяжелого) на две (иногда на три) примерно равные по массе части (осколки деления).
Тяжелые ядра (Z≥ 90) делятся как после слабого предварительного возбуждения атомного ядра, например, в результате облучения его нейтронами с энергией Tn ≈ 1 Мэв, а для некоторых ядер даже тепловыми нейтронами (вынужденное деление), так и без предварительного возбуждения, т. е. самопроизвольно (спонтанное деление).
Ядра с Z < 90 делятся только вынужденным способом (точнее говоря, они имеют слишком большой период полураспада спонтанного деления), причем энергия возбуждения, необходимая для деления, растет с уменьшением параметра деления Z2/A. Вынужденное деление происходит практически мгновенно (τ ≈ 10-14 сек). Период полураспада для спонтанного деления меняется для разных ядер в очень широких пределах (от 1018 лет до нескольких десятых долей секунды для далеких трансурановых элементов).
В процессе деления ядра освобождается энергия Q ≈ 200 Мэв, значительную часть которой (~170 Мэв) уносят осколки в форме кинетической энергии. Осколки, образующиеся при делении, сильно перегружены нейтронами, вследствие чего они дают начало β--радиоактивным цепочкам из продуктов деления, а также испускают мгновенные (2—3 на один акт деления 92U) и запаздывающие (~ 1% мгновенных) нейтроны. В опытах по определению числа вторичных нейтронов, испускаемых в процессе вынужденного и спонтанного деления, было получено приближенное значение этого числа ν, равное (для обоих случаев) ν = 2,2 ± 0,3.
Мгновенные нейтроны испускаются движущимися осколками, запаздывающие - остановившимися продуктами деления поле предварительного β--распада. Спектр мгновенных нейтронов деления непрерывный, а запаздывающие нейтроны образуют несколько моноэнергетических групп.
Вынужденное деление слабо возбужденных ядер и спонтанное деление происходят не симметрично: отношение масс легкого и тяжелого осколков равно примерно 2/3 (двугорбая массовая кривая). При повышении энергии возбуждения деление постепенно симметризуется, и кривая распределения осколков по массам становится одногорбой.
Основные свойства процесса деления могут быть объяснены при помощи капельной модели ядра, которая позволяет вычислить Q, понять роль параметра деления и объяснить природу спонтанного деления.
Величина Q вычисляется как разность масс (энергий) исходного ядра и осколков, выраженных с помощью полуэмпирической формулы Вейцзеккера. Вычисление показывает, что деление энергетически выгодно (Q > 0) при Z2/A > 17 (т. е. при Z > 47), причем Q растет с ростом Z2/A. Из более подробного анализа следует, что в процессе деформации, предшествующей делению, энергия ядра должна первоначально возрастать и только после этого убывать (энергетический барьер деления). Высота барьера деления убывает с ростом Z2/A и при Z2/A = 45÷49 становится равной нулю (Z ≈ 120). Вынужденное деление возможно только при предварительном возбуждении ядра на энергию, превышающую высоту барьера деления. Спонтанное деление происходит в механизме туннельного перехода. При Z ≈ 120 спонтанное деление должно происходить мгновенно (за ядерное время).
Обратим внимание на то, что в этом отличии энергетической выгодности и энергетической возможности процесса нет ничего удивительного. Так, например, α-распад тяжелых ядер периодической системы всегда энергетически выгоден, однако из-за кулоновского барьера он оказывается энергетически невозможным в классической физике. Существование α-распада удается объяснить только при помощи квантово-механического эффекта прохождения α-частиц через потенциальный барьер. При этом из-за малой прозрачности потенциального барьера время жизни ядра относительно α-распада оказывается очень большим.
Деление ядер может происходить многими путями. Всего при делении образуется около 80 радиоактивных различных ядер-осколков, которые в процессе β-распада преобразуются в другие ядра — продукты деления. В настоящее время хорошо изучено примерно 60 цепочек, в составе которых обнаружено около 200 продуктов деления. Таким образом, средняя длина цепочки составляет 3—4 звена. В процессе последовательных β-переходов заряд первичного осколка может изменяться на 4 — 6 единиц (возможно, и больше, так как трудно регистрировать начальные участки цепочек из-за очень малых периодов полураспада).
Учитывая, что в разных случаях цепочки превращений имеют различную длину, и что при делении образуются два осколка, можно оценить среднее число электронов и антинейтрино, испускающихся на один акт деления. Оно равно примерно шести. Кроме того, в процессе β-переходов осколков и продуктов деления должны испускаться γ-кванты, сопровождающие β-распад.
Периоды полураспада у различных продуктов деления очень сильно отличаются.
Do'stlaringiz bilan baham: |