XelSekrulebis 7 punqtiT gaTvaliswinebuli xelSekrulebis nomeri saxelmwifo samecniero grantiT #



Download 247 Kb.
Sana28.06.2017
Hajmi247 Kb.



saqarTvelos erovnul samecniero fonds


warmogidgenT # 035 xelSekrulebis 3.7 punqtiT gaTvaliswinebuli

xelSekrulebis nomeri
saxelmwifo samecniero grantiT # GNSF/ST06/3-035 dafinansebuli

grantis nomeri
proeqtis: “deformad myar da Txevad nawilebisagan Semdgari garemos ierarqiuli maTematikuri modelebis ageba da gamokvleva

proeqtis dasaxeleba
VIII kvartlis teqnikur angariSs.

danarTi 1 - teqnikuri angariSi:

forma #1 – zogadi informacia;

forma #2 – programuli angariSi;

forma #3 – finansuri angariSi.

wamyvani organizaciis xelmZRvanelis xelmowera da beWedi: ________________________

TariRi: __________________


I. z o g a d i i n f o r m a c i a




proeqtis saxelwodeba:


deformad myar da Txevad nawilebisagan Semdgari garemos ierarqiuli maTematikuri modelebis ageba da gamokvleva


proeqtis xelmZRvaneli:

giorgi jaiani




proeqtis xelmZRvanelis sakontaqto informacia:


tel: 188098; 290470

faqsi: 186645

el-fosta: jaiani@viam.sci.tsu.ge; george.jaiani@gmail.com



grantis mimRebi wamyvani organizacia:

iv. javaxiSvilis sax. Tbilisis saxelmwifo universiteti




saangariSo kvartlis nomeri:

8



saangariSo kvartlis vadebi:

(01.07.08 – 30.09.08)





saangariSo kvartliT gansazRvruli tranSis odenoba


9,781.5 lari


grantis mTliani odenoba

98,640.00 lari




proeqtis xangrZlivoba

8 kvartali



proeqtis xelmZRvanelis xelmowera: _________________

2. p r o g r a m u l i a n g a r i S i
proeqtis Sifri 06_862_3-109


#

dasaxuli amocanebi

ganxorcielebuli amocanebis mokle aRwera

ganxorcielebuli amocanebis Sesrulebis amsaxveli TandarTuli angariSgebis masalebis nusxa

faqtiurad Sesrulebeli amocanebis Sesabamosoba gegmiur amocanebTan. amocanebis nawilobriv Sesrulebis an arSesrulebis SemTxvevaSi - mizezebis ganmarteba

1.

1.1 drekadi myari da Txevadi nawilebisagan Semdgari mravalfeniani prizmuli garsebisaT­vis dinamikuri samgan­zo­mi­le­biani amocanis

organ­zomilebiani mo­de­lebis ierarqiiT apro­q­simacia

(g. avaliSvili, m. avaliSvili, d. gordeziani)


variaciuli midgomis gamoyenebiT agebulia mya­ri drekadi da Txevadi nawilebisagan Semdgari priz­mu­li garsis ierarqiuli organzomilebiani mo­de­le­bi. ganxilulia drekadi da Txevadi na­wi­le­bi­sa­gan Semdgari sxeulis samganzomilebia­ni di­na­mi­kuri maTematikuri modeli, roca myari na­wi­li war­moadgens sazogadod araerTgvarovan, ani­zo­t­ro­pul drekad garemos, xolo Txevadi na­wi­li ki er­Tgvarovani blanti arakumSvadi siT­xi­sa­gan Se­d­geba. drekadi nawilis daZabul-de­for­mi­re­buli mdgo­mareobis aRwerisaTvis gamoiyeneba dre­ka­do­bis Teoriis wrfivi modeli, Txevad na­wi­l­Si ki na­vie-stoqsis gantole­baTa sistemis ozee­nis gaw­r­fivebuli modeli. aRniSnuli modelebis Se­sa­bamisi diferencialuri saxiT mocemuli sam­gan­zo­milebiani sawyis-sasazRvro amocanisa­Tvis moy­va­nilia variaciuli formulireba da amo­ca­na­Si Se­mavali funqciebis sakmarisi sigluvis pi­ro­beb­Si naCvenebia maTi eqvivalenturoba. myari da Txe­vadi nawilebisagan Semdgari sxeulis organ­zo­mi­le­bian modelTa ierarqiis asagebad gan­xi­lu­lia cva­­lebadi sisqis prizmul garsebi da sa­saz­Rvro pi­­robebis sami varianti, roca zeda da qve­da pi­riT zedapirebze mocemulia Zabvebi; zeda da qve­da piriTi zedapirebi Camagrebulia myari nawi­liT da Txevadi nawilis Sesabamis sazRvarze siC­­qare nulis tolia; da zeda piriTi zedapiris mya­­ri nawili Camagrebulia da Txevadi nawilis sa­z­­Rvris gaswvriv siCqare nulis tolia, xolo qve­­da piriT zedapirze mocemulia Zabva. TiToeul Sem­­TxvevaSi Semotanilia Ziri­Tadi sivr­ceebis qve­­sivrceebi, romelTa veqtor-funqciebis kompo­ne­n­­tebi warmoad­genen poli­nomebs prizmuli gar­sis sis­qis mixedviT cvladis mimarT da am qvesiv­rce­e­b­ze gadasvliT agebulia myari drekadi da Txe­va­di nawilebisagan Semdgari prizmuli garsis di­na­mikur organzomilebian modelTa ierarqiebi.

ix. danarTi 1.3, 4 da 5

Sesrulebulia

1.2 diferencialuri ierar­qiuli modelebis ageba blanti siTxi­saT­vis, romelsac ukavia Txe­li cvladi simaR­lis prizmuli are

(n. CinCalaze, g. jaiani)



ozeenis modelze dayrdnobiT cxadi saxiTaa age­bu­li ierarqiuli diferencialuri modelebis ori varianti, roca blant (kerZod, idealur) siT­xes ukavia mcire sisqis prizmuli are, piriT ze­dapirebze mocemulia an mxolod Zabvebi, an mxo­lod gadaadgilebebi, xolo gverdiT cilin­drul zedapirebze nebismieri sasazRvro piro­be­bi. dasmulia sakontaqto pirobebi ierarqiuli mo­­delebisTvis, roca garemo Sedgeba myari dre­ka­di da Txevadi nawilebisgan, romelTac ukaviaT cvla­di sisqis prizmuli areebi (e. i. myari dre­ka­di nawili prizmul garss warmoadgens). SemdegSi si­dideebs aRvniSnavT msgavsi simboloebiT niS­na­ke­biT s da f, rac myari da Txevadi nawilebis Se­sa­bamisi iqneba.

ix. danarTi 1.3, 4 da 5

Sesrulebulia

2.

drekadi da Txevadi nawilebisagan Semdgari garemos arawrfivi ierarqiuli modelebi sawyisi miaxloebebisaTvis

(T. vaSaymaZe)



pirvel-oTx kvartalSi agebuli arastacionaru­li (sivrculi cvladis mimarT organzomile­bia­ni) modelebi sawyisi () miaxloebisaTvis [ganixilulia ori SemTxveva: wrfivi (ozeenis mo­de­li) da arawrfivi] gamoyenebulia droiTi cvla­dis mimarT wrfeTa (rotes tipis-anu na­xev­rad­diskretizaciis) meTodi. Semdgom drois yo­vel bijze igeba, rogorc wesi, aracxadi sqemebi, rom­lebic warmoadgens arawrfiv sasazRvro amo­ca­naTa sistemebs. Catarebul iqna gaTvlebi tes­tu­ri amocanebisaTvis.

ix. danarTi 2.2, 4 da 5

Sesrulebulia

3.

deformadi myari da Txevadi nawilebisagan Semdgari garemos ierarqiuli modelebis gantolebebis ricxviTi amoxsnis algoriTmebis ageba da gamokvleva

(j. rogava, m. wiklauri, r. boWoriSvili)



SemuSavebulia drekadi prizmuli garsisa da marCxi wylis urTierTqmedebis amocanis ricxviTi amoxsnis algoriTmi nulovani miaxloebisaTvis, sazogadod, aracilindruli deformaciis (wina kvartalSi ganxiluli iyo cilindruli de­for­ma­cia) SemTxvevaSi.

ix. danarTi 3.2, 4 da 5

Sesrulebulia

g. jaiani

___________________________________________

proeqtis xelmZRvanelis gvari da xelmowera
konferenciebSi monawileoba


  1. Chinchaladze N., On a system consisting of degenerate equations of second order, 5ECM (5th European Congress of Mathematics), Amsterdam (Netherlands), 13-17 July, 2008

  2. Jaiani G., On existence theorems for cuspidal prismatic shell–like bodies, 5ECM (5th European Congress of Mathematics), Amsterdam (Netherlands), 13-17 July, 2008

  3. M. Avalishvili, G. Avalishvili, D. Gordeziani, On mathematical modelling of multilayer prismatic shells consisting of elastic and fluid parts, International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008.

  4. Chinchaladze N., On a cylindrical vibration of a double-layer prismatic body, International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008.

  5. Jaiani G., Partial differential equations in thin domains, International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008.



proeqtis farglebSi miRebuli Sedegebis safuZvelze

gamoqveynebuli Sromebis nusxa


  1. M. Avalishvili, G. Avalishvili, D. Gordeziani. On mathematical modelling of multilayer prismatic shells consisting of elastic and fluid parts, Book of Abstracts of the International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008, p. 73

  2. Chinchaladze N., On a cylindrical vibration of a double-layer prismatic body, Book of Abstracts of the International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008, p. 50

  3. Jaiani G., Partial differential equations in thin domains, Book of Abstracts of the International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008, p. 51



konferenciebSi monawileoba


    1. Vashakmadze T., Initial approximations of nonlinear hierarchical models for medium consisting of porous-solid and fluid parts, International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008

    2. Vashakmadze T., Chikashua R., Arabidze D., Two methods of approximate solution of boundary value problems for ordinary differential equations, International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008

    3. Vashakmadze T., Von karman type systems of equation for porous, piezo and viscous elastic plates, International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008

    4. vaSaymaZe T., relei-lembis tipis moculobiTi talRebis Sesaxeb, k. zav­rie­vis saxelobis samSeneblo meqanikisa da seismomedegobis institutis saqalaqo seminari - 2 ivlisi, 2008


proeqtis farglebSi miRebuli Sedegebis safuZvelze

gamoqveynebuli Sromebis nusxa


  1. Vashakmadze T., Initial approximations of nonlinear hierarchical models for medium consisting of porous-solid and fluid parts, Book of Abstracts of the International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008, p. 56

  2. Vashakmadze T., Chikashua R., Arabidze D., Two methods of approximate solution of boundary value problems for ordinary differential equations, Book of Abstracts of the International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008, p. 81

  3. Vashakmadze T., Von karman type systems of equation for porous, piezo and viscous elastic plates, Book of Abstracts of the International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008, p. 30

  4. Vashakmadze T., 2D Nonlinar Mathematical Models of von Kármán-Mindlin-Reissner Type for Thin-walled Structures Connected with Seismic Problems. Materials of the first International Conference on Seismic Safety Problems Region Population, Cities and Departments, SSCR-2008, Sept. 8-11, Tbilisi, 3p.

  5. Vashakmadze T., Mathematical Models for Bending Problems of some Thin-walled Elastic Structuresfor Binary Mixtures, Materials of Interntional Conference “Architecture and Construction – Topical Problems”, 2008, YSUAC, Yerevan,5p.

  6. Vashakmadze T., - Filon type Mathematical Models for Extension (Compression) Processes of some Thin-walled Elastic Structures for Binary Mixtures . Materials of Interntional Conference “Architecture and Construction – Topical Problems”, 2008, YSUAC, Yerevan, 5p.



konferenciebSi monawileoba


  1. Rogava J, Tsiklauri M., On Error Estimation of Symmetric Decomposition Formula for the Semigroup, International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008.



proeqtis farglebSi miRebuli Sedegebis safuZvelze

gamoqveynebuli Sromebis nusxa


  1. Rogava J, Tsiklauri M., On Error Estimation of Symmetric Decomposition Formula for the Semigroup, Book of Abstract of the International Conference "Modern Problems in Applied Mathematics", Tbilisi, October 7 - October 9, 2008, p. 54


proeqtis GNSF/ST06/3-035 seminaris
o q m i
29 seqtemberi 2008 weli
seminars eswrebodnen: g. avaliSvili, m. avaliSvili, T. vaSaymaZe, d. gordeziani, j. rogava, n. CinCalaZe, m. wiklauri, g. jaiani
dRis wesrigi:
proeqtis GNSF/ST06/3-035 SemsrulebelTa mier me-8 kvartalSi gaweuli muSaobis angariSi (prof. giorgi jaiani)
moismines:
1. daviT gordezianis, mariam avaliSvilis da gia avaliSvilis moxseneba Temaze: "drekadi da Txevadi nawilebisagan Semdgari garemos wrfivi ierarqiuli modelebis ageba Txevad nawilSi ozeenis gawrfivebuli modelis gamoyenebiT"

2. natalia CinCalaZis da giorgi jaianis moxseneba Temaze: "ozeenis tipis ierarqiuli diferencialuri modelebis ori varianti, roca siTxes ukavia prizmuli are"

3. Tamaz vaSaymaZis moxseneba Temaze "drekadi da Txevadi nawilebisagan Semdgari gare­mos arawrfivi ierarqiuli modelebi sawyisi miaxloe­bebi­saT­vis naxevraddiskretu­li sqemebis ageba-gamokvleva"

4. jemal rogavas da mixeil wiklauris moxseneba Temaze: "mudmivi sisqis organzomilebiano drekadi prizmuli garsisa da marCxi wylis urTierTqmedebis amocanis ricxviTi amoxsnis algoriTmi nulovani miaxloebisaTvis"


azri gamoTqves:
d. gordezianma, T. vaSaymaZem da j. rogavam.

g. jaianma Seajama miRebuli Sedegebi.


daadgines:

miRebul iqnas cnobad, rom moxsenebuli axali Sedegebi srulad Seesabameba me-8 kvartalSi proeqtiT GNSF/ST06/3-035 gaTvaliswinebul samuSaoebs.


seminaris xelmZRvaneli, profesori g. jaiani

sademonstracio dRe

 
a.w. 7-9 oqtombers iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universitetis i. vekuas gamoyenebiTi maTematikis institutSi Catarda saerTaSoriso konferencia "gamoyenebiTi maTematikis Tanamedrove problemebi" (programis da Tezisebis eleqtronuli versia ixileT http://www.viam.science.tsu.ge/viam40/announcement.htm).

 
kerZowarmoebuliani diferencialuri gantolebebis, kompiuteruli meqanikis da maTematikuri modelirebis da ricxviTi analizis seqciebze Sedga proeqtis GNSF/ST06/3-035 (xelmZRvaneli g. jaiani) monawileTa mier proeqtis farglebSi miRebuli Sedegebis prezentacia, razec winaswar ecnoba saqarTvelos erovnul samecniero fonds.

 


III. f i n a n s u r i a n g a r i S i

proeqtis dafinansebis dawyebis TariRi – 01.10.2006 # 429

saangariSo periodis dasrulebis TariRi - 30.09.2008

Tanxa larebSi

moTxovnili dokumentebi:




1. amonaweri bankidan saangariSo periodisaTvis.






















2. saangariSo periodSi SeZenili ZiriTadi saSualebebisa da mcirefasiani sagnebis sainventaro nusxa.




3. ganmartebiTi baraTi sabanko angariSze darCenili naSTis Taobaze.

wamyvani organizaciis xelmZRvanelis xelmowera: _______________________________

wamyvani organizaciis mTavari buRaltris xelmowera: ___________________________


SeTanxmebulia:

proeqtis xelmZRvanelis xelmowera: _____________



TariRi: ___________________







Каталог: files -> projects -> gnsf st063 035 -> 035
files -> Jahon qishloq xo’jaligiga umumiy ta’rif
files -> O‘zbekistonda Oziq-ovqat dasturini amalga oshirishning muhim zaxiralari
files -> O`zbekistonning eng go`zal va betakror makonlaridan biri bu Farg`ona vodiysidir. Iqlim sharoiti, geografik joylashuvi, tabiiy boyliklari kabi qator xislatlariga ko`ra Farg`ona qadimdan e'tibor qozonib kelgan
files -> O‘rta asrlar Sharq allomalari va mutafakkirlarining tarixiy merosi, uning zamonaviy sivilizatsiya rivojidagi roli va ahamiyati
files -> Valyutani tartibga solish to'G'risida o'zbekiston Respublikasi Qonuniga o'zgartishlar va qo'shimchalar kiritish haqida
files -> Vazirlar Mahkamasining 1994 yil 13 apreldagi 206-son qarori bilan tasdiqlangan
files -> Garov to'G'risidagi o'zbekiston respublikasi qonuniga o'zgartishlar va qo'shimchalar kiritish haqida
files -> Ipoteka to'G'risida qonunchilik palatasi tomonidan 2006 yil 28 iyunda qabul qilingan Senat tomonidan 2006 yil 25 avgustda ma'qullangan
035 -> SaqarTvelos erovnuli samecniero fondi
projects -> Request for Bids Yakama Nation Yakima River Edge Habitat Project


Do'stlaringiz bilan baham:


Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2019
ma'muriyatiga murojaat qiling

    Bosh sahifa