Дисклеймер!



Download 1,25 Mb.
bet6/11
Sana26.03.2022
Hajmi1,25 Mb.
#511368
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
Ответы ПК по химии

которое является полным дифференциалом функции {\displaystyle H(S,P)} [K 3]. Она представляет собой термодинамический потенциал[] относительно естественных независимых переменных — энтропии, давления и, возможно, числа частиц[] и других переменных состояния [].
Понятие энтальпии существенно дополняет математический аппарат термодинамики[] и гидродинамики[]. Важно, что в изобарном процессе при постоянном {\displaystyle P}  изменение энтальпии
{\displaystyle H_{2}-H_{1}=U_{2}-U_{1}+P\left(V_{2}-V_{1}\right)=Q,}
равное сумме изменения внутренней энергии {\displaystyle U_{2}-U_{1}}  и совершённой системой работы {\displaystyle P\left(V_{2}-V_{1}\right)} , в силу первого начала термодинамики равно количеству теплоты {\displaystyle Q} , сообщенной системе. Это свойство энтальпии позволяет использовать её для вычисления тепловыделения при различных изобарных процессах, например, химических[].
Отношение малого количества теплоты, {\displaystyle T\mathrm {d} S=\mathrm {d} H,}  переданного системе в изобарном процессе, к изменению температуры {\displaystyle \mathrm {d} T}  является теплоёмкостью при постоянном давлении[K 4][20]:
{\displaystyle C_{P}\equiv T\left({\frac {\partial S}{\partial T}}\right)_{P}=\left({\frac {\partial H}{\partial T}}\right)_{P}.}
Это экспериментально измеримая величина, и из её измерений находят температурную зависимость энтальпии[].
Энтальпия — экстенсивная величина: для составной системы она равна сумме энтальпий её независимых частей. Как и внутренняя энергия, энтальпия определяется с точностью до произвольного постоянного слагаемого.
Условие самопроизвольного протекания процесса
Критерием самопроизвольного протекания процесса в изолированной системе является ΔS>0, равновесия – ΔS=0. 2. Энтропия является функцией состояния и ее смысл расшифровывается в статистической термодинамики как мера беспорядка системы. Чем больше беспорядок, тем больше энтропия

28 Закон Гесса и его выводы


Ответ: Закон Гесса — основной закон термохимии, который формулируется следующим образом:

  • Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе (при p,T = const или V,T = const), всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы). Например, окисление глюкозы в организме осуществляется по очень сложному многостадийному механизму, однако суммарный тепловой эффект всех стадий данного процесса равен теплоте сгорания глюкозы. Иными словами, закон Гесса есть утверждение о том, что тепловой эффект реакции (Qp = ΔHp,T или QV=ΔUV,T) является функцией состояния. Тепловой эффект реакции (который определён только для изобарно-изотермического или для изохорно-изотермического процессов) нельзя путать с теплотой (Q), выделяемой или поглощаемой в ходе процесса или реакции. В общем случае теплота не является функцией состояния и не описывается законом Гесса.

На рисунке приведено схематическое изображение некоторого обобщенного химического процесса превращения исходных веществ А1, А2… в продукты реакции В1, В2…, который может быть осуществлен различными путями в одну, две или три стадии, каждая из которых сопровождается тепловым эффектом ΔHi. Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением:
{\displaystyle \Delta H_{1}=\Delta H_{2}+\Delta H_{3}=\Delta H_{4}+\Delta H_{5}+\Delta H_{6}.}
Закон открыт русским химиком Г. И. Гессом в 1841 году; он является частным случаем первого начала термодинамики применительно к химическим реакциям. Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него.
Закон Гесса(вывод)
Q=/\U+A(расш)=/\U+p/\V
В случае изохорного процесса V=const
Qv=/\U+p(V2-V1)=/\U
В случае изобарного процесса p=const
Qp=(U2-U1)+p(V2-V1)=(U2+pV2)-(U1+pV1)
Qp=/\H2-/\H1
+Тепловой эффект при p=const и v=const не зависит от пусти процесса.

29Второй закон термодинамики. Энтропия. Свободная энергия.


Второ́е нача́ло термодина́мики (второй закон термодинамики) устанавливает существование энтропии[1] как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры[2], то есть «второе начало представляет собой закон об энтропии»[3] и её свойствах[4]. В изолированной системе энтропия либо остаётся неизменной, либо возрастает (в неравновесных процессах[3]), достигая максимума при установлении термодинамического равновесия (закон возрастания энтропии)[5][6][2]. Встречающиеся в литературе различные формулировки второго начала термодинамики являются частными следствиями закона возрастания энтропии[5][6].
Второе начало термодинамики позволяет построить рациональную температурную шкалу, не зависящую от произвола в выборе термометрического свойства термодинамического тела и устройства для измерения температуры (термометра)[7].
Вместе первое и второе начала составляют основу феноменологической термодинамики, которую можно рассматривать как развитую систему следствий этих двух начал. При этом из всех допускаемых первым началом процессов в термодинамической системе (то есть процессов, не противоречащих закону сохранения энергии) второе начало позволяет выделить фактически возможные процессы, не противоречащие законам термодинамики[7], установить направление протекания самопроизвольных процессов, найти предельное (наибольшее или наименьшее) значение энергии, которое может быть полезным образом использовано (получено или затрачено) в термодинамическом процессе с учётом ограничений, накладываемых законами термодинамики, а также сформулировать критерии равновесия в термодинамических системах[5][6][2]. Энтропи́я (от др.-греч. ἐν «в» + τροπή «обращение; превращение») — широко используемый в естественных и точных науках термин (впервые введён в рамках термодинамики как функция состояния термодинамической системы), обозначающий меру необратимого рассеивания энергии или бесполезности энергии (потому что не всю энергию системы можно использовать для превращения в какую-нибудь полезную работу). Для понятия энтропии в данном разделе физики используют название термодинамическая энтропия; термодинамическая энтропия обычно применяется для описания равновесных (обратимых) процессов.
В статистической физике энтропия характеризует вероятность осуществления какого-либо макроскопического состояния. Кроме физики, термин широко употребляется в математике: теории информации и математической статистике. В этих областях знания энтропия определяется статистически и называется статистической или информационной энтропией. Данное определение энтропии известно также как энтропия Шеннона (в математике) и энтропия Больцмана—Гиббса (в физике).
Хотя понятия термодинамической и информационной энтропии вводятся в рамках различных формализмов, они имеют общий физический смысл — логарифм числа доступных микросостояний системы. Взаимосвязь этих понятий впервые установил Людвиг Больцман. В неравновесных (необратимых) процессах энтропия также служит мерой близости состояния системы к равновесному: чем больше энтропия, тем ближе система к равновесию (в состоянии термодинамического равновесия энтропия системы максимальна).
В широком смысле, в каком слово часто употребляется в быту, энтропия означает меру сложности, хаотичности или неопределённости системы: чем меньше элементы системы подчинены какому-либо порядку, тем выше энтропия.
Величина, противоположная энтропии, именуется негэнтропией или, реже, экстропией.
Термином «свободная энергия» обозначают один из четырех термодинамических потенциалов:

  • Свободная энергия Гельмгольца, {\displaystyle F=U-TS}  — в этом значении термин обычно употребляется в физике.

  • Свободная энергия Гиббса, {\displaystyle G=U+PV-TS}  — в этом значении термин обычно употребляется в химии и физической химии.

  • Свободная энергия — концепция поиска новых источников энергии. Под свободной энергией понимается энергия, не требующая последующих затрат на топливо или другие энергоносители. К таким источникам можно отнести ветрогенератор, солнечные батареи, гидроэлектростанции, и т. д.

30 Биогенные элементы. Их разнообразие. Распространение биогенных элементов в окружающей среде.


Ответ: БИОГЕННЫЕ ЭЛЕМЕНТЫ — вещества, необходимые для существования живых организмов кислород, углерод, водород, азот, фосфор, калий, кальций, магний, железо, натрий, сера, кремний, марганец, йод, мышьяк и др  Распространение элементов в земной коре и организмах. Биогенные элементы. Классификация элементов.


Часть земной оболочки, занятой растительными и животными организмами и переработанная ими и космическими излучениями и приспособленная к жизни, на­зывают биосферой (по Вернадскому).
Л. П. Виноградов считал, что концентрация элементов в живом веществе прямо пропорциональна его содержанию в среде обитания с учетом растворимости их соединений. По мнению А. П. Виноградова химический состав организма определяется составом окружающей среды. Биосфера содержит 100 млрд тонн живого вещества. Около 50% массы земной коры приходится на кислород, более 25% на кремний. Восемнадцать элементов (О, Si, Al, Fe, Ca. Na, К, Mg, H, Ti, С, Р, N, S, Cl, F, Мn, Ва) составляют 99,8% массы земной ко­ры. Живые организмы принимают активное участие в перераспределении химических элементов в земной коре. Минералы, природные химические вещества, образуются в био­сфере в различных количествах, благодаря деятельности живых веществ (образование железных руд, горных пород, в основе которых соединения кальция). Кроме этого, оказывают влияние техногенные загрязнения окружающей среды. Изменения, происходящие в верх­них слоях земной коры, влияют на химический состав живых организмов. В организме можно обнаружить почти все элементы, которые есть в земной коре и морской воде. Пути поступления элементов в организм разнообразны. Согласно биогеохимической теории Вернадского существует «биогенная миграция атомов» по цепочке воздух> почва®вода®пища®человек, в результате которой практически все элементы, окружающие человека во внешней среде, в большей или меньшей степени проникают внутрь организма.
Содержание некоторых элементов в организме по сравнению с окружающей средой повышенное – это называют биологическим концентрированием элемента. Например, углерода в земной коре 0,35%, а по содержанию в живых организмах занимает второе место (21%). Однако эта закономерность наблюдается не всегда. Так, кремния в земной коре 27,6%, а в живых организмах его мало, алюминия – 7,45%, а в живых организмах -1·10-5%.
В составе живого вещества найдено более 70 элементов.
Элементы необходимые организму для построения и жизнедеятельности клеток и органов, называют биогенными элементами.
Для 30 элементов биогенность установлена. Существует несколько классификаций био­генных элементов:
А) По их функциональной роли:
1) органогены, в организме их 97,4% (С, Н, О, N, Р, S),
2) элементы электролитного фона (Na, К, Ca, Mg, Сl). Данные ионы металлов состав­ляют 99% общего содержания металлов в организме;
3) Микроэлементы – это биологически активные атомы центров ферментов, гормонов (переходные металлы).
Б) По концентрации элементов в организме биогенные элементы делят:
1) макро­элементы;
2) микроэлементы;
3) ультрамикроэлементы.
Биогенные элементы, содержание которых превышает 0,01% от массы тела, относят кмакроэлементам. К ним отнесены 12 элементов: органогены, ионы электролитного фона и железо. Они составляют 99,99% живого субстрата. Еще более поразительно, что 99% жи­вых тканей содержат только шесть элементов: С, Н, О, N, Р, Ca. Элементы К, Na, Mg, Fe, Сl, S относят к олигобиогенным элементам. Содержание их колеблется от 0,1 до 1%. Биогенные элементы, суммарное содержание которых составляет величину порядка 0,01%, относят к микроэлементам. Содержание каждого из них ? 0,001% (10-3 – 10-5%).Большинство микроэлементов содержится в основном в тканях печени. Это депо микроэлементов. Некоторые микроэлементы проявляют сродство к определенным тканям ( йод - к щитовидной железе, фтор - к эмали зубов, цинк - к поджелудочной железе, молибден - к почкам и т.д.). Элемен­ты, содержание которых меньше чем 10-5%, относят культрамикроэлементам. Данные о количестве и биологической роли многих элементов невыяснены до конца. Некоторые из них постоянно содержатся в организме животных и человека: Ga, Ti, F, Al, As, Cr, Ni, Se, Ge, Sn и другие. Биологическая роль их мало выяснена. Их относят к условно биогенным элементам. Другие примесные элемен­ты (Те, Sc, In, W, Re и другие) обнаружены в организме человека и животных, и данные об их количестве и биологической роли не выяснены. Примесные элементы также делят на аккумулирующиеся (Hg, Pb, Cd) и не аккумулирующиеся (Al, Ag, Go, Ti, F). Известны крылатые слова, сказанные в 40-х годах немецкими учеными Вальтером и Идой Ноддак: «В каждом булыжнике на мостовой присутствуют все элементы периодической системы». Если согласиться, что в каждом булыжнике содержатся все элементы, то тем более это должно быть справедливо для живого организма.
+Все живые организмы имеют тесный контакт с окружающей средой. Жизнь требует по­стоянного обмена веществ в организме. Поступлению в организм химических элементов способствует питание и потребляемая вода. Организм состоит из воды на 60%, 34% при­ходится на органические вещества и 6% на неорганические. Основными компонентами органических веществ являются С, Н, О. В их состав входят также N, P, S. В составе неор­ганических веществ обязательно присутствуют 22 химических элемента (смотрите таблицу № 1). Например, если вес человека составляет 70 кг, то в нём содержится (в граммах): Са - 1700, К - 250, Na –70, Mg - 42, Fe - 5, Zn - 3. На долю металлов приходится 2,1 кг. Содержа­ние в организме элементов IIIA–VIA групп, ковалентносвязанных с органической ча­стью молекул, уменьшается с ростом заряда ядра атомов данной группы периодической системы Д. И. Менделеева. Например, w(О) > w(S) > w(Se) > w(Fe). Количество элементов, находящихся в организме в виде ионов (s-элементы IA, IIА групп, р-элементы VIIA груп­пы), с ростом заряда ядра атома в группе увеличивается до элемента с оптимальным ион­ным радиусом, а затем уменьшается. Например, во IIА группе при переходе от Be к Са со­держание в организме увеличивается, а затем от Ва к Ra снижается. Элементы, аналоги, имеющие близкое строение атомов, имеют много общего в биологическом действии. В соответствии с рекомендацией диетологической комиссии Национальной академии США ежедневное поступление химических элементов с пищей должно находиться на определенном уровне . Столько же химических элементов должно выводиться , поскольку их содержание в организме находится в относительном постоянстве.
31Эндемические и профессиональные заболевания. Роль биогенных элементов в охране окружающей среды.
Эндемическое заболевание — заболевание, характерное для определённой местности. Часто связано с резкой недостаточностью или избыточностью содержания какого-либо химического элемента в среде. Может развиваться у растений, животных и человека. Например, при недостаточности иода в пище возникает простой зоб (эндемический зоб) у животных и людей, при избыточности селена в почвах — появление ядовитой селеновой флоры [источник не указан 835 дней]и многие другие эндемии.
Кроме того, эндемическими могут быть инфекции, возбудители которых постоянно пребывают (персистируют) в определенной местности — например, энзоотия чумы среди грызунов в Казахстане, эндемия холеры в Индии или малярии в субтропической Африке. Эндемичным заболеваниям противопоставляются заносные инфекции.
Шведский нарколог Нильс Бейерут говорил об эндемиях применительно к распространению зависимости от отдельных веществ. Примерами подобных эндемий могут служить алкоголизм или зависимость от курения, поразившие значительную часть населения в отдельных странах или местностях

  • Профессиональное заболевание – это заболевание, которое вызвано названными в перечне профессиональных заболеваний факторами опасности трудовой среды или характером работы. Важным признаком профессионального заболевания является медленный и постепенно прогрессирующий процесс заболевания с хроническим протеканиемострые и хронические интоксикации,

  • заболевания, вызванные пром. аэрозолями,

  • заболевания вызванные физическими факторами,

  • заболевания, связанные с физическими перегрузками и перенапряжением,

Оснавная роль в подержании жизни организма
32Биогенные элементы. s-элементы. Качественные реакции ионов натрия и калия. Их значение в функционировании организма.
33Биогенные элементы. s-элементы. Качественные реакции ионов кальция и магния. Их значение в функционировании организма.
34Биогенные элементы. s-элементы. Качественные реакции ионов стронция и бария. Их значение в функционировании организма.
35Биогенные элементы. p-элементы. Качественные реакции ионов алюминия, свинца и олова . Их значение в функционировании организма. 
36Биогенные элементы. p-элементы. Качественные реакции анионов p-элементов. Важность фосфора, азота, углерода и кислорода в организме.
37Биогенные элементы. p-элементы. Качественные реакции анионов галогенов. Роль галогенов в функционировании организма.
38Биогенные элементы. d-элементы. Качественные реакции ионов серебра, меди и цинка. Их значение в деятельности организма и их роль в активности ферментов.
39Биогенные элементы. d-элементы. Качественные реакции ионов железа. Роль железа, кобальта и никеля в организме и роль ферментов.
ОТВЕТ НА 32 33 34 35 36 37 Такие s-элементы, как водород, натрий, калий, магний, кальций являются важнейшими биогенными макроэлементами. К s – элементам относятся элементы I и П групп, главных подгрупп ПСЭ, у которых электронами заполняется s – подуровень внешнего уровня (IА гр. – nS1 , IIА гр. – nS2 ). Характерные степени окисления в организме для элементов IА группы - +1, П А группы - +2. К группе IА ПСЭ относятся: водород, литий, натрий, рубидий, франций, стронций НЕ ДО КОНЦА К р-элементам относятся последние 6 элементов II–VI периодов (VII период не завершен). Электронная формула внешнего слоя этих элементов np1–np6. Это элементы главных подгрупп III–VIII групп (кроме гелия, он s-элемент). Из них к макроэлементам относятся O, C, N, P, S, Cl, они же являются жизненно необходимыми биогенными элементами. Большинство р-элементов относятся к примесным микроэлементам. Из микроэлементов только йод (I) относится к числу незаменимых биогенных элементов. Фтор (F) также можно считать элементом, необходимым для нормального функционирования живых организмов. Некоторые исследователи относят и селен (Se) к жизненно необходимым элементам. Элементы d-семейства (d-элементы) – это элементы, у которых последний электрон заполняет d-орбиталь предвнешнего электронного слоя (2-го снаружи слоя). К ним относятся элементы, находящиеся в середине больших периодов (между s- и р-элементами). Их называют также переходными элементами. Так как d-орбиталей пять, и на каждой может быть по два электрона, то всего на d-подуровне может быть 10 электронов. Им соответствуют 10 d-элементов. Например, в IV периоде к d-элементам относятся элемента от Sc (№21) до Zn (№30) включительно. Качественные реакции неорганической химии. Всем химикам, как опытным, так и начинающим, хоть раз, но доводилось слышать этот термин. В химии качественные реакции очень важны, с ними тесно связан один из разделов химии — аналитическая химия. Итак, в этой статье я изложу качественные реакции, как школьного курса, так и немного «нестандартные». Ну что ж, начнем! Качественные реакции определяют катионы, анионы, порой и целые соединения. 1. Качественные реакции на катионы. 1.1.1 Качественные реакции на катионы щелочных металлов (Li+, Na+, K+, Rb+, Cs+). Катионы щелочных металлов возможно провести только с сухими солями, т.к. практически все соли щелочных металлов растворимы. Обнаружить их можно при внесении небольшого количества соли в пламя горелки. Тот или иной катион окрашивает пламя в соответствующий цвет: Li+ — темно-розовый. Na+ — желтый. K+ — фиолетовый. Rb+ — красный. Cs+ — голубой. Катионы так же можно обнаружить и с помощью химических реакций. При сливании раствора соли лития с фосфатами образуется нерастворимый в воде, но растворимый в конц. азотной кислоте, фосфат лития: 3Li+ + PO43- = П 3РО 4 Li3PO4 + 3HNO3 = 3LiN O 3 + H3PO4 Катион K+ можно вывести гидротартрат-анионом HC4H4O6- — анионом винной кислоты: K+ + H C4H4O6- = K H C4H4O6I Катионы K+ и Rb+ можно выявить добавлением к растворам их солей кремнефтористой кислоты H2[SiF6] или ее солей — гексафторсиликатов: 2Me+ + [SiF6]2- = M e2[SiF6]| (Me = K, Rb) Они же и Cs+ осаждаются из растворов при добавлении перхлорат-анионов: Me+ + ClO4- = MeClO4| (Me = K, Rb, Cs). 1.1.2 Качественные реакции на катионы щелочно-земельных металлов (Ca2+, Sr2+, Ba2+, Ra2+). Катионы щелочно-земельных металлов можно выявить двумя способами: в растворе и по окраске пламени. Кстати, к щелочно-земельным относятся кальций, стронций, барий и радий. Бериллий и магний нельзя отнести к этой группе, как это любят делать на просторах Интернета. Окраска пламени: Ca2+ — кирпично-красный. 2+ Sr — карминово-красный. Ba2+ — желтовато-зеленый. Ra2+ — темно-красный. Реакции в растворах. Катионы рассматриваемых металлов имеют общую особенность: их карбонаты и сульфаты нерастворимы. Катион Ca2+ предпочитают выявлять карбонат-анионом CO 32-: Ca2+ + CO32" = CaCO3| Который легко растворяется в азотной кислоте с выделением углекислого газа: 2H+ + CO32" = H2O + CO2T Катионы Ba2+, Sr2+ и Ra2+ предпочитают выявлять сульфат-анионом с образованием сульфатов, нерастворимых в кислотах: Sr2+ + SO42" = SrSO4| Ba2+ + SO42" = BaSO4| Ra2+ + SO42" = RaSO4| 1.1.3. Качественные реакции на катионы свинца (II) Pb2+, серебра (I) Ag+, ртути (I) Hg2+, ртути (II) Hg2+. Рассмотрим их на примере свинца и серебра. Эта группу катионов объединяет одна общая особенность: они образуют нерастворимые хлориды. Но катионы свинца и серебра можно выявить и другими галогенидами. Качественная реакция на катион свинца — образование хлорида свинца (осадок белого цвета), либо образование иодида свинца (осадок ярко желтого цвета): Pb2+ + 2Г = Pbb j Качественная реакция на катион серебра — образование белого творожистого осадка хлорида серебра, желтовато-белого осадка бромида серебра, образование желтого осадка иодида серебра: Ag+ + C l- = A g C lj Ag+ + Br- = A g B rj Ag+ + Г = A g Ij Как видно из выше изложенных реакций, галогениды серебра (кроме фторида) нерастворимы, а бромид и иодид даже имеют окраску. Но отличительная черта их не в этом. Данные соединения разлагаются под действием света на серебро и соответствующий галоген, что также помогает их идентифицировать. Поэтому часто емкости с этими солями испускают запахи. Также при добавлении к данным осадкам тиосульфата натрия происходит растворение: AgHal + 2Na2S2O3 = Na3[Ag(S2O3)2] + NaHal, (Hal = Cl, Br, I). То же самое произойдет при добавлении жидкого аммиака или его конц. раствора. Растворяется только AgCl. A gB r и A g l в аммиаке практически нерастворимы: A gC l + 2NH3 = [Ag(NH3)2]Cl Существует также еще одна качественная реакция на катион серебра — образование оксида серебра черного цвета при добавлении щелочи: 2Ag+ + 2OH" = Ag2O j + H2O Это связано с тем, что гидроксид серебра при нормальных условиях не существует и сразу же распадается на оксид и воду. 1.1.4. Качественная реакция на катионы алюминия Al3+, хрома (III) Cr3+, цинка Z n +, олова (II) Sn2+. Данные катионы объединены образованием нерастворимых оснований, легко переводимых в комплексные соединения. Групповой реагент — щелочь. A l3+ + 3OH- = Al(OH)3 j + 3O H = [Al(OH)6]3- Cr3+ + 3OH- = Cr(OH)3 j + 3OH" = [Cr(OH)6]3- Zn2+ + 2OH- = Zn(OH)2 j + 2OH- = [Zn(OH)4]2- Sn2+ + 2OH- = Sn(OH)2 j + 2OH" = [Sn(OH)4]2" Не стоит забывать, что основания катионов A l3+, Cr3+ и Sn2+ не переводятся в комплексное соединение гидратом аммиака. Этим пользуются, чтобы полностью осадить катионы. Zn2+ при добавлении конц. раствора аммиака сначала образует Zn(OH)2, а при избытке аммиак способствует растворению осадка: Zn(OH)2 + 4NH3 = [Zn(NH3)4](OH)2 Раствор, содержащий [Cr(OH)6]3-, при добавлении хлорной или бромной воды в щелочной среде становится желтым из-за образования хромат-аниона CrO42-: 2[Cr(OH)6]3- + 3Br2 + 4OH" = 2CrO42- + 6Br + 8H2O 1.1.5. Качественная реакция на катионы железа (II) и (III) Fe2+, Fe3+. Данные катионы также образуют нерастворимые основания. Иону Fe2+ отвечает гидроксид железа (II) Fe(OH)2 — осадок белого цвета. На воздухе сразу покрывается зеленым налетом, поэтому чистый Fe(OH)2 получают в атмосфере инертых газов либо азота N 2. Катиону Fe3+ отвечает метагидроксид железа (III) FeO(OH) бурого цвета. Примечание: соединения состава Fe(OH)3 неизвестно (не получено). Но все же большинство придерживаются записи Fe(OH)3. Качественная реакция на Fe2+: Fe2+ + 2OH- = Fe(OH)2 j Fe(OH)2 будучи соединением двухвалентного железа на воздухе неустойчиво и постепенно переходит в гидроксид железа (III): 4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3 Качественная реакция на Fe3+: Fe3+ + 3OH- = Fe(OH)3 j Еще одной качественной реакцией на Fe3+ является взаимодействие с роданид-анионом SCN", при этом образуется роданид железа (III) Fe(SCN)3, окрашивающий раствор в темно-красный цвет (эффект «крови»): Fe3+ + 3SCN" = Fe(SCN)3 Роданид железа (III) легко «разрушается» при добавлении фторидов щелочных металлов: 6NaF + Fe(SCN)3 = Na3[FeF6] + 3NaSCN Раствор становится бесцветным. Очень чувствительная реакция на Fe3+, помогает обнаружить даже очень незначительные следы данного катиона. 1.1.6. Качественная реакция на катион марганца (II) Mn2+. Данная реакция основана на жестком окислении марганца в кислой среде с изменением степени окисления с +2 до +7. При этом раствор окрашивается в темно-фиолетовый цвет из-за появления перманганат-аниона. Рассмотрим на примере нитрата марганца: 2Mn(NO3)2 + 5PbO2 + 6HNO3 = 2HMnO4 + 5Pb(NO3)2 + 2H2O 1.1.7. Качественная реакция на катионы меди (II) Cu2+, кобальта (II) Co2+ и никеля (II) Ni2+. Особенность этих катионов в образовании с молекулами аммиака комплексных солей — аммиакатов: Cu2+ + 4NH3 = [Cu(NH3)4]2+ Аммиакаты окрашивают растворы в яркие цвета. К примеру, аммиакат меди окрашивает раствор в яркосиний цвет. 1.1.8. Качественные реакции на катион аммония NH4+. Взаимодействие солей аммония со щелочами при кипячении: NH4+ + OH" =t= NH3T + H2O При поднесении влажная лакмусовая бумажка окрасится в синий цвет. 3+ 1.1.9. Качественная реакция на катион церия (III) Ce . Взаимодействие солей церия (III) с щелочным раствором пероксида водорода: Ce3+ + 3OH- = Ce(OH)3j 2Ce(OH)3 + 3H2O2 = 2Ce(OH)3(OOH)j + 2H2O Пероксогидроксид церия (IV) имеет красно-бурый цвет. 1.2.1. Качественная реакция на катион висмута (III) Bi3+. Образование ярко-желтого раствора 3+ тетраиодовисмутата (III) калия K[BiI4] при действии на раствор, содержащий Bi , избытком KI: Bi(NO3)3 + 4K I = K[BiI4] + 3K N O 3 Связано это с тем, что сначала образуется нерастворимый BiI3, который затем связывается с помощью I- в комплекс. На этом я закончу описание выявления катионов. Теперь рассмотрим качественные реакции на некоторые анионы. 2. Качественные реакции на анионы. 2.1.1. Качественные реакции на сульфид-анион S2'. Из сульфидов растворимы сульфиды только щелочных металлов и аммония. Нерастворимые сульфиды имеют специфическую окраску, по которым можно определить тот или иной сульфид. Окраска: MnS — телесный (розовый). ZnS — белый. PbS — черный. A g2S — черный. CdS — лимонно-желтый. SnS — шоколадный. HgS (метакиноварь) — черный. HgS (киноварь) — красный. Sb2S3 — оранжевый. Bi2S3 — черный. Некоторые сульфиды при взаимодействии с кислотами-неокислителями образуют токсичный газ сероводород H2S с неприятным запахом (тухлых яиц): Na2S + 2HBr = 2NaBr + H2ST S2- + 2H+ = H2S| А некоторые устойчивы к разбавленным растворам HCl, HBr, HI, H2SO4, HCOOH, CH3CO O H — к примеру CuS, Cu2S, A g2S, HgS, PbS, CdS, Sb2S3, SnS и некоторые другие. Но они переводятся в раствор конц. азотной кислотой при кипячении (Sb2S3 и HgS растворяются тяжелее всего, причем последний гораздо быстрее растворится в царской водке): CuS + 8HNO3 =t= CuSO4 + 8NO2t + 4H2O Также сульфид-анион можно выявить, приливая раствор сульфида к бромной воде: S2- + Br2 = S j + 2Br Образующаяся сера выпадает в осадок. 2.1.2. Качественная реакция на сульфат-анион SO42' . Сульфат-анион обычно осаждают катионом свинца, либо бария: Pb2+ + SO42' = PbSO4j Осадок сульфата свинца белого цвета. 2.1.3. Качественная реакция на силикат-анион SiO32-. Силикат-анион легко осаждается из раствора в виде стекловидной массы при добавлении сильных кислот: SiO32- + 2H+ = H2SiO3 j (SiO2 * nH2O) 2.1.4. Качественные реакции на хлорид-анион C l, бромид-анион B r, иодид-анион Г смотрите в пункте «качественные реакции на катион серебра Ag+«. 2­ 2.1.5. Качественная реакция на сульфит-анион SO3 - При добавлении к раствору сильных кислот образуется диоксид серы SO2 — газ с резким запахом (запах зажженной спички): SO32' + 2H+ = SO2T + H2O 2.1.6. Качественная реакция на карбонат-анион CO32-. При добавлении к раствору карбоната сильных кислот образуется углекислый газ CO2, гасящий горящую лучинку: CO32' + 2H+ = CO2T + H2O 2­ 2.1.7. Качественная реакция на тиосульфат-анион S2O3 - При добавлении раствора серной или соляной кислоты к раствору тиосульфата образуется диоксид серы SO2 и выпадает в осадок элементарная сера S: S2O32' + 2H+ = S j + SO2T + H2O 2.1.8. Качественная реакция на хромат-анион CrO42 . При добавлении к раствору хромата раствора солей бария выпадает желтый осадок хромата бария BaCrO4, разлагающегося в сильнокислой среде: Ba2+ + CrO42- = BaCrO4 j Растворы хроматов окрашены в желтый цвет. При подкислении раствора цвет изменится на оранжевый, 2- отвечающий дихромат-аниону Cr2O7 -: 2CrO42- + 2H+ = &2O72' + H2O Кроме того хроматы являются окислителями в щелочной и нейтральной средах (окислительные способности хуже, чем у дихроматов): S2 + CrO42- + H2O = S + Cr(OH)3 + OH2.1.9. Качественная реакция на дихромат-анион Cr2O72-. При добавлении к раствору дихромата раствора соли серебра образуется осадок оранжевого цвета A g 2Cr2O7: 2A g + Cr2O72 = A g2& 2O7 j Растворы дихроматов окрашены в оранжевый цвет. При подщелачивании раствора окраска изменяется на 2- желтую, отвечающую хромат-аниону CrO4 -: Cr2O72- + 2OH- = 2CrO42- + H2O Кроме того, дихроматы — сильные окислители в кислой среде. При внесении в подкисленный раствор дихромата какого-либо восстановителя окраска раствора изменится с оранжевого на зеленый, отвечающей катиону хрома (III) Сг3+ (в качестве восстановителя бромид-анион): 6Br + Cr2O72- + 14H+ = 3Br2 + 2Cr3+ + 7H2O Эффектная качественная реакция на шестивалентный хром — темно-синее окрашивание раствора при добавлении конц. перекиси водорода в эфире. Образуется пероксид хрома состава CrO 5. 2.2.0. Качественная реакция на перманганат-анион MnO4-. Перманганат-анион «выдает» темнофиолетовая окраска раствора. Кроме того, перманганаты — сильнейшие окислители, в кислой среде восстанавливаются до Mn2+ (фиолетовая окраска исчезает), в нейтральной — до Mn+4 (окраска исчезает, 2- выпадает бурый осадок диоксида марганца MnO2) и в щелочной — до MnO42- (окраска раствора изменяется на темно-зеленый): 5SO32- + 2MnO4- + 6H+ = 5SO42- + 2Mn2+ + 3H2O 3SO32- + 2M nO4- + H2O = 3SO42- + 2M nO2j + 2OHSO32- + 2M nO4- + 2OH- = SO42- + 2MnO42- + H2O 2.2.1. Качественная реакция на манганат-анион MnO42-. При подкислении раствора манганата темнозеленая окраска изменяется на темно-фиолетовую, отвечающую перманганат-аниону MnO4-: 3K 2MnO4^ .) + 4Н С1(разб.) = M nO2 j + 2KM nO4 + 4K C l + 2H2O 2.2.2. Качественная реакция на фосфат-анион PO43'. При добавлении к раствору фосфата раствора соли серебра выпадает желтоватый осадок фосфата серебра (I) Ag3PO4: 3Ag+ + PO43- = A g3PO4 j Аналогична реакция и к дигидрофосфат-аниону H2PO4-. 2.2.3. Качественная реакция на феррат-анион FeO42\ Осаждение из раствора феррата бария красного цвета (реакция проводится в среде щелочи): Ba2+ + FeO42- =OH = BaFeO4 j Ферраты — сильнейшие окислители (сильнее перманганатов). Устойчивы в щелочной среде, неустойчивы в кислой: 4FeO42- + 20H+ = 4Fe3+ + 3O2T + IOH2O 2.2.4. Качественная реакция на нитрат-анион NO3. Нитраты в растворе не проявляют окислительных способностей. Но при подкислении раствора способны окислить, к примеру, медь (раствор подкисляют обычно разб. H2SO4): 3Cu + 2N O3- + 8H+ = 3Cu2+ + 2N O | + 4H2O 2.2.5. Качественная реакция на гексацианноферрат (II) и (III) ионы [Fe(CN)6f~ и [Fe(CN)6]3-. При приливании растворов, содержащих Fe2+, образуется осадок темно-синего цвета (турнбулева синь, берлинская лазурь): K3[Fe(CN)6] + FeCl2 = KFe[Fe(CN)6] + 2K C1 (при этом осадок состоит из смеси KFe(II)[Fe(III)(CN)6], KFe(in)[Fe(II)(CN)6], Fe3[Fe(CN)6]2, Fe4[Fe(CN)6]3). 2.2.6. Качественная реакция на арсенат-анион AsO43'. Образование нерастворимого в воде арсената серебра (I) A g3AsO 4, имеющего цвет «кофе с молоком»: 3Ag+ + AsO43- = A g3AsO4 j Вот основные качественные реакции на анионы. Далее мы рассмотрим качественные реакции на простые и сложные вещества. 3. Качественные реакции на простые и сложные вещества. Некоторые простые и сложные вещества, как и ионы, обнаруживаются качественными реакциями. Ниже я опишу качественные реакции на некоторые вещества. 3.1.1. Качественная реакция на водород H 2. Лающий хлопок при поднесении горящей лучинки к источнику водорода. 3.1.2. Качественная реакция на азот N2. Тушение горящей лучинки в атмосфере азота. При пропускании в раствор Ca(OH)2 осадок не выпадает. 3.1.3. Качественная реакция на кислород O2. Яркое загорание тлеющей лучинки в атмосфере кислорода. 3.1.4. Качественная реакция на озон O3. Взаимодействие озона с раствором иодидов с выпадением кристаллического иода I2 в осадок: 2KI + O3 + H2O = 2KO H + I2 j + O2| В отличии от озона кислород в данную реакцию не вступает. Полагается 3.1.5. Качественная реакция на хлор Cl2. Хлор - газ желто-зеленого цвета с очень неприятным запахом.При взаимодействии недостатка хлора с растворами иодидов в осадок выпадает элементарный иод I2: 2KI + C l2 = 2K Cl + I2 j Избыток хлора приведет к окислению образовавшегося иода: I2 + 5C l2 + 6H2O = 2HIO3 + 10HCl 3.1.6. Качественные реакции на аммиак NH3. Примечание: данные реакции не дают в школьном курсе. Однако, это самые надежные качественные реакции на аммиак. Почернение бумажки, смоченной в растворе соли ртути (I) Hg2+: Hg2Cl2 + 2NH3 = Hg(NH2)Cl + Hg + NH4Cl Бумажка чернеет из-за выделения мелкодисперсной ртути. Взаимодействие аммиака с щелочным раствором тетраиодомеркурата (II) калия K 2[HgI4] (реактив Несслера): 2K 2[HgI4] + NH3 + 3KO H = [Hg2N]I • H2O j + 7KI + 2H2O Комплекс [Hg2N]I • H2O бурого цвета (цвет ржавчины) выпадает в осадок. Две последние реакции являются самыми надежными на аммиак. Реакция аммиака с хлороводородом («дым» без огня): NH3 + HCl = NH4Cl 3.1.7. Качественная реакция на фосген (хлорокись углерода, карбонил хлорид) COCl2. Испускание белого «дыма» от бумажки, смоченной в растворе аммиака: COCl2 + 4NH3 = (NH2)2CO + 2NH4Cl 3.1.8. Качественная реакция на угарный газ (моноксид углерода) CO. Помутнение раствора при пропускании угарного газа в раствор хлорида палладия (II): PdCl2 + CO + H2O = CO2T + 2HCl + P dj 3.1.9. Качественная реакция на углекислый газ (диоксид углерода) CO2. Тушение тлеющей лучинки в атмосфере углекислого газа. Пропускание углекислого газа в раствор гашеной извести Ca(OH)2: Ca(OH)2 + CO2 = CaCO3 j + H2O Дальнейшее пропускание приведет к растворению осадка: CaCO3 + CO2 + H2O = Ca(HCO3)2 3.2.1. Качественная реакция на оксид азота (II) NO. Оксид азота (II) очень чувствителен к кислороду воздуха, потому на воздухе буреет, окисляясь до оксида азота (IV) N O 2: 2NO + O2 = 2N O2 Роль железа, кобальта и никеля в организме и роль ферментов
Железо. По содержанию в организме человека железо относится к жизненно необходимым микроэлементам. Большая часть железа (”70%) сосредоточена в гемоглобине крови. Железо входит в состав ферментов, например, цитохромов, каталазы и др. В связанной форме железо находится в белках, которые выполняют роль переносчиков железа.
Комплексы железа:
а) Гемоглобин
Наиболее важным внутрикомплексным соединением железа является гемоглобин, который представляет собой белок, содержащий небелковую группу – гем. Гем – это бионеорганический комплекс железа (II) с органическим веществом – порфирином.
Физиологическая функция гемоглобина заключается в способности обратимо связывать кислород и переносить его от легких к тканям. Если гемоглобин условно обозначить HbFe2+, то реакцию обратимого присоединения кислорода можно выразить схемой:




дезоксигемоглобин оксигемоглобин
Гемоглобин, присоединивший кислород, называется оксигемоглобином, а без кислорода – дезоксигемоглобином. Гемоглобин взаимодействует также с оксидом углерода(II) (угарным газом). При этом образуется макроциклический комплекс с железом – карбоксигемоглобин:

карбоксигемоглобин
Константа устойчивости этого комплекса приблизительно в 200 раз больше, чем оксигемоглобина. Поэтому при вдыхании оксида углерода(II) большая часть гемоглобина переходит в карбоксигемоглобин, что нарушает перенос кислорода от легких к тканям и вызывает отравление организма. При значительном увеличении парциального давления кислорода равновесие реакции может сместиться в сторону разрушения [Hb ∙ Fe2+ ∙ CO] и частичного образования оксигемоглобина.
Серьезной причиной отравления оксидом углерода(II) является курение. Содержание карбоксигемоглобина в крови курильщика, выкуривающего пачку сигарет в день, составляет в среднем 4,7%, а у некурящих всего – 0,3-0,5%.
б) Миоглобин (Mb)
Комплексообразователем в миоглобине является ион Fe2+, который, предоставляя 6 свободных атомных орбиталей, образует 6 связей по донорно-акцепторному механизму. Из них 4 связи железо образует с порфириновым лигандом, пятая занята белком глобином, а шестая связь – молекулой воды, которая связана лабильно с комплексообразователем. Миоглобин связывает часть кислорода, поступающего в ткань, за счет замещения молекулы воды на молекулу кислорода, образуя оксигемоглобин [Mb ∙ Fe2+ ∙ O2]:

Миоглобин достаточно прочно удерживает кислород. Это позволяет тка­ням запасать кислород для его использования только при острой кислородной недостаточности. в) Цитохромы – группа окислительно-восстановительных ферментов, представ­ляющих собой гемсодержащий комплекс с белком. Функция комплекса заключается в переносе электрона за счет обратимого изменения степени окисления комплексообразователя:

г) Каталазы и пероксидазы– группа железосодержащих ферментов, активные центры которых содержат Fe3+. Каталаза ускоряет разложение H2O2:

Пероксидаза ускоряет реакции окисления субстратов RH2 пероксидом водорода:
RH2 + H2O2  R∙ + 2H2O
Таким образом, эти ферменты защищают клетку от Н2О2 - продукта свободного окисления.
д) Ферритин
В органах и тканях имеется депонированное (запасенное) железо, которое используется, если возникает дефицит железа. Депонируется оно с помощью белка – ферритина, который представляет собой биокластер с высокой молекулярной массой.
Кобальтотносится кжизненно необходимым (эссенциальным) элементам. В организме содержится 1,2 мг кобальта в основном в составе витамина В12, центральным атомом которого является Со3+. Витамин В12 необходим для нор­мального кроветворения и созревания эритроцитов, синтеза аминокис­лот, белков, РНК, ДНК.
Никель.В организме человека никель содержится в количестве 5-13,5 мг, около 49% микроэлемента в мышечной ткани, кроме того в лёгких, коже, печени. В организме человека он входит в состав ряда ферментов. Установлено, что никель пролонгирует действие инсулина, что увеличивает его гипогликемическую активность. Никель оказывает влияние на ферментативные процессы, окисление аскорбиновой кислоты, ускоряет процесс перехода сульфгидрильных групп в дисульфидные. Он угнетает действие адреналина и снижает артериальное давление.
40Укажите, какие факторы определяют количество микробиогенных элементов в организме человека.
ОТВЕТ: НЕ НАШЕЛ ОТВ
\26Первый закон термодинамики. Изохорский и изобарный процессы
Ответ: Пе́рвое нача́ло термодина́мики (первый закон термодинамики) — один из основных законов этой дисциплины, представляющий собой конкретизацию общефизического закона сохранения энергии для термодинамических систем, в которых необходимо учитывать термические, массообменные и химические процессы[1][2][3]. В форме закона сохранения (уравнения баланса энергии) первое начало используют в термодинамике потока и в неравновесной термодинамике. В равновесной термодинамике под первым законом термодинамики обычно подразумевают одно из следствий закона сохранения энергии, из чего проистекает отсутствие единообразия формулировок первого начала, используемых в учебной и научной литературе (К. А. Путилов в своей монографии[4] приводит шесть формулировок, которые он считает наиболее удачными). Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя (перпетуум мобиле) первого рода, который совершал бы работу, не черпая энергию из какого-либо источника[1][2][3]. Связь этого утверждения с законом сохранения энергии самоочевидна.
Переход от микроскопического описания системы к макроскопическому ведёт к радикальному сокращению числа физических величин, необходимых для описания системы. Поэтому в термодинамике энергетические превращения — подчас весьма сложные, — происходящие внутри системы на микроуровне, не детализируют[6], а совокупно описывают посредством специально для этой цели вводимой макроскопической величины — внутренней энергии, составной части полной энергии системы, с микроскопической точки зрения представляющей собой сумму энергий всех входящих в систему частиц[7]. По этой причине в тех учебниках, в которых не касаются вопросов термодинамики потока и неравновесной термодинамики, нередко формулируют первое начало как постулат, вводящий в физику макроскопических систем представление о внутренней энергии[2] как об аддитивной величине[8][9], являющейся однозначной, непрерывной и конечной скалярной функцией состояния термодинамической системы[10]. Как и для любой другой функции состояния, изменение внутренней энергии {\displaystyle U}  в бесконечно малом процессе есть полный дифференциал {\displaystyle dU} , а изменение внутренней энергии в круговом процессе равно нулю[11][12][13][14]:


Download 1,25 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish