C++ Neural Networks and Fuzzy Logic: Preface


C++ Neural Networks and Fuzzy Logic



Download 1,14 Mb.
Pdf ko'rish
bet258/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   254   255   256   257   258   259   260   261   ...   443
Bog'liq
C neural networks and fuzzy logic

C++ Neural Networks and Fuzzy Logic

by Valluru B. Rao

MTBooks, IDG Books Worldwide, Inc.



ISBN: 1558515526   Pub Date: 06/01/95

Previous Table of Contents Next



Other Experiments to Try

You can try other experiments with the program. For example, you can repeat the input file but with the order

of the entries changed. In other words, you can present the same inputs a number of times in different order.

This actually helps the Kohonen network train faster. You can try applying garbled versions of the characters

to see if the network distinguishes them. Just as in the backpropagation program, you can save the weights in

a weight file to freeze the state of training, and then apply new inputs. You can enter all of the characters from



A to Z and see the classification that results. Do you need to train on all of the characters or a subset? You can

change the size of the Kohonen layer. How many neurons do you need to recognize the complete alphabet?

There is no restriction on using digital inputs of 1 and 0 as we had used. You can apply grayscale analog

values. The program will display the input pattern according to the quantization levels that were set. This set

can be expanded, and you can use a graphics interface to display more levels. You can then try pattern

recognition of arbitrary images, but remember that processing time will increase rapidly with the number of

neurons used. The number of input neurons you choose is dictated by the image resolution, unless you filter

and/or subsample the image before presenting it to the network. Filtering is the process of using a type of

averaging function applied to groups of pixels. Subsampling is the process of choosing a lower−output image

resolution by selecting fewer pixels than a source image. If you start with an image that is 100 × 100 pixels,

you can subsample this image 2:1 in each direction to obtain an image that is one−fourth the size, or 50 × 50

pixels. Whether you throw away every other pixel to get this output resolution or apply a filter is up to you.

You could average every two pixels to get one output pixel as an example of a very simple filter.


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   254   255   256   257   258   259   260   261   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish