C++ Neural Networks and Fuzzy Logic: Preface


Training Law for the Kohonen Map



Download 1,14 Mb.
Pdf ko'rish
bet231/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   227   228   229   230   231   232   233   234   ...   443
Bog'liq
C neural networks and fuzzy logic

Training Law for the Kohonen Map

The training law for the Kohonen feature map is straightforward. The change in weight vector for a given

output neuron is a gain constant, alpha, multiplied by the difference between the input vector and the old

weight vector:



W

new


 = W

old


 + alpha * (Input −W

old


)

Both the old weight vector and the input vector are normalized to unit length. Alpha is a gain constant

between 0 and 1.

Significance of the Training Law

Let us consider the case of a two−dimensional input vector. If you look at a unit circle, as shown in Figure

11.2, the effect of the training law is to try to align the weight vector and the input vector. Each pattern

attempts to nudge the weight vector closer by a fraction determined by alpha. For three dimensions the surface

becomes a unit sphere instead of a circle. For higher dimensions you term the surface a hypersphere. It is not

necessarily ideal to have perfect alignment of the input and weight vectors. You use neural networks for their

ability to recognize patterns, but also to generalize input data sets. By aligning all input vectors to the

corresponding winner weight vectors, you are essentially memorizing the input data set classes. It may be

more desirable to come close, so that noisy or incomplete inputs may still trigger the correct classification.

Figure 11.2

  The training law for the Kohonen map as shown on a unit circle.

C++ Neural Networks and Fuzzy Logic:Preface

The Mexican Hat Function

221




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   227   228   229   230   231   232   233   234   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish