C++ Neural Networks and Fuzzy Logic: Preface


C++ Neural Networks and Fuzzy Logic



Download 1,14 Mb.
Pdf ko'rish
bet154/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   150   151   152   153   154   155   156   157   ...   443
Bog'liq
C neural networks and fuzzy logic

C++ Neural Networks and Fuzzy Logic

by Valluru B. Rao

MTBooks, IDG Books Worldwide, Inc.



ISBN: 1558515526   Pub Date: 06/01/95

Previous Table of Contents Next



Adjustments to Threshold Values or Biases

The bias or the threshold value we added to the activation, before applying the threshold function to get the

output of a neuron, will also be adjusted based on the error being propagated back. The needed values for this

are in the previous discussion.

The adjustment for the threshold value of a neuron in the output layer is obtained by multiplying the

calculated error (not just the difference) in the output at the output neuron and the learning rate parameter used

in the adjustment calculation for weights at this layer. In our previous example, we have the learning rate

parameter as 0.2, and the error vector as (–0.02, –0.04, 0.04, 0.11), so the adjustments to the threshold values

of the four output neurons are given by the vector (–0.004, –0.008, 0.008, 0.022). These adjustments are

added to the current levels of threshold values at the output neurons.

The adjustment to the threshold value of a neuron in the hidden layer is obtained similarly by multiplying the

learning rate with the computed error in the output of the hidden layer neuron. Therefore, for the second

neuron in the hidden layer, the adjustment to its threshold value is calculated as 0.15 * –0.0041, which is

–0.0006. Add this to the current threshold value of 0.679 to get 0.6784, which is to be used for this neuron in

the next training pattern for the neural network.


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   150   151   152   153   154   155   156   157   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish