Mustaqil ishi
Chiziqli algebraga doir linalg paketiga doir topshiriqlar
(3) misoldagi A matritsaning determinantini, biror minorini, izini toping
> #(3) misoldagi A matrisaning determinantini,biror minorini, izini toping
> with(linalg):Foydalanilayotgan kutubxonani chaqirish.
> A:=matrix([[5,3,-1],[2,0,4],[3,5,-1]]);Matrisani kiritish;
> det(A);Determinatni hisoblash.
> minor(A,3,2);Minorini topish .
> trace(A);Bosh dioganaldagi sonlar yig'indisini topish.
(3) misoldagi B matritsaning teskarisini va transponirlangnini toping
> #(3)-misoldagi B matrisaning teskarisini va transponirlanganini topish
> B:=<<1,-3,5>|<4,-2,7>|<16,0,2>>; Matrisani kiritish;
> inverse(B); Teskari matrisani topish 1-usul.
> evalm(1/B); Matrisaning teskarisini teskarisini topish 2-usul.
> Transpose(B);Matrisani transponerlash
(1) va (2) va (4) tenglamalar sistemalarini yeching
> #(1),(2) va (4) tenglamalar sistemasini yeching
> solve({2*x1+x2-5*x3+x4=8,x1-3*x2-6*x4=9,2*x2-x3+2*x4=-5,x1+4*x2-7*x3+6*x4=0},[x1,x2,x3,x4]); (1) tenglamalar sistemasini yechish
> solve({x1+x2+2*x3=-1,2*x1-x2+2*x3=-4,4*x1+x2+4*x3=-2},[x1,x2,x3]); (2) tenglamalar sistemasini yechish
> A4:=matrix([[4,2,1],[3,-2,0],[0,-1,2]]);
B4:=matrix([[2,0,2],[5,-7,-2],[1,0,-1]]);
> linsolve(A4,B4); AX=B ko'rinishdagi tenglamani yechish.
(3) amallarni bajaring
> #(3) dagi amallarni bajaring
> A:=<<5,2,3>|<3,0,5>|<-1,4,-1>>;
B:=<<1,-3,5>|<4,-2,7>|<16,0,2>>;
A1:=matrix([[5,3,-1],[2,0,4],[3,5,-1]]);
B1:=matrix([[1,4,16],[-3,-2,0],[5,7,2]]);
> -0.5*B;
> matadd(A,%);
> C:=<<4.500000000, 3.500000000, .500000000>|<1., 1., 1.500000000>|<-9.,4., -2.>>;
>
> 2*C;
> C:=matrix([[9,2,-18],[7,2,8],[1,3,-4]]);
> evalm(C+A1&*B1);
Tenglama va tengsizliklar
A. Berilgan tenglamani ildizlairini hisoblang.
> solve(x^3-0.2*x^2+0.5*x-1.4=0,[x]);
B.Berilgan chiziqlimas tenglamalar sistamasini yeching
> solve({sin(x-1)=1.3-y,x-sin(y+1)=0.8},[x,y]);
Limitlar.
A
> Limit((x+1)^3/(-5*x^9+1),x=3)=limit((x+1)^3/(-5*x^9+1),x=3);
B
> Limit((x+2)*[ln(2*x+1)-ln(2*x-1)],x=infinity)=limit((x+2)*(ln(2*x+1)-ln(2*x-1)),x=infinity);
V
> Limit((sqrt(x+1)-2)/(sqrt(x-2)-1),x=3)=limit((sqrt(x+1)-2)/(sqrt(x-2)-1),x=3);
G
> Limit((1-cos(2*x))/x^2,x=0)=limit((1-cos(2*x))/x^2,x=0);
Hosila
A
> restart:Diff(ln(sqrt(2*sin(x)+1)),x)=diff(ln(sqrt(2*sin(x)+1)),x);
B
> restart:Diff(3^(arctan(x^2)),x)=diff(3^(arctan(x^2)),x);
V
> restart:
diff(x+arcsin(y)-y=0,x);
G
> restart:
x:=3*cos(t);
y:=4*(sin(t)^2);
> dx/dy=diff(x,t)/diff(y,t);
II tartibli egri chiziqlar
> with(geometry):
> conic(c9,x^2+y^2+4*x=0,[x,y]);
ellipse: "the given equation is indeed a circle"
> detail(c9);
> with(plots):
> implicitplot(x^2+y^2+4*x=0, x=-1..1, y=-1..1);
>
Do'stlaringiz bilan baham: |