Sx2=',Sx2:4:3,',',
'Sx=',Sx:4:3,'.
',
'
Ì.Á.×åëûøêîâà ning hisoblariga kura optimal test topshiriqlari uchun urta arifmetik taxminan standart chetlashishning uchlanganiga teng bulishi lozim.
',
'
(3),
',
'
Shunday qilib,
');
if (3*Sx*NN/Matrix2[NN+1,MM+1]<1.9)and(3*Sx*NN/Matrix2[NN+1,MM+1]>0.6) then
writeln(output,'
',(Matrix2[NN+1,MM+1]/NN):4:3,'==',3*Sx:4:3,',
',
'
Bulgani uchun dispersiya optimal va test topshiriqlarining taqsimoti normalga yaqin.
')
else
writeln(output,'
',(Matrix2[NN+1,MM+1]/NN):4:3,'<>',3*Sx:4:3,'
,',
'
dispersiya optimal emas.
');
{-------- Âûâîä Êîððåëÿöèîííàÿ ìàòðèöà òåñòîâûõ çàäàíèé--------}
writeln(output,'
4-jadval. Test topshiriqlarining korelyatsion matrisasi
');
writeln(output,'');
writeln(output,'');
writeln(output,'¹ | ');
for j := 1 to MM do writeln(output,'',j,' | ');
writeln(output,'rpb | ');
writeln(output,' ');
for i := 1 to MM do
begin
writeln(output,'');
writeln(output,'',i,'. | ');
for j := 1 to MM+1 do
write(output,'',Matrix3[i,j]:4:3,' | ');
writeln(output,' ');
end;
writeln(output,'');
writeln(output,' | ');
for j := 1 to MM+1 do write(output,'',Matrix3[MM+1,j]:4:3,' | ');
writeln(output,' ');
writeln(output,'');
writeln(output,' | ');
for j := 1 to MM+1 do write(output,'',Matrix3[MM+2,j]:4:3,' | ');
writeln(output,' ');
writeln(output,' ');
writeln(output,'
Pirsonning ?mk koefisienti m-testni, k-test bilan boglikligini aniqlaydi va quyidagicha aniqlanadi:',
'quyidagicha aniqlanadi:
',
'
,
',
'
bunda,pm – m-test topshirigi uchun to`g`ri javoblar salmogi;',
'qm –m-test topshirigi uchun noto`g`ri javoblar salmogi; ',
'pk – k-test topshirigi uchun tugri javoblar salmogi;
',
'qk – k-test topshirigi uchun tugri javoblar salmogi;',
'pmk – m va k-test topshiriglari uchun tugri javoblar salmogi.
',
'
rpbbissarial korelyatsiya koefisienti quyidagicha aniqlanadi:
',
'
',
'
bunda - mazkur topshiriqqa tugri javob bergan test topshiruvchilarning urtacha bali.
',
' - mazkur topshiriqqa notugri javob bergan test topshiruvchilarning urtacha bali.
',
'n1 – mazkur topshiriqni bajarganlar soni, ',
'n0 – mazkur topshiriqni bajarmaganlar soni. ',
'n = n1 + n0 – umumiy ishtirokchilar soni; ',
'Sx - barcha ishtirokchilar indiudal baliga nisbatan standart chetlashuvi.
',
'Â.Ñ.Àâàíåñîâ ning taklifi buyicha, test topshiriq javobining natijasi bilan test topshiruvchilarning ',
'indiudal balining korelyatsiyasi rpb≥0,5. bulishiga erishish lozim.');
{-------- Âûâîä áèíàðíîé ìàòðèöû äëÿ îïðåäåëåíèÿ íàäåæíîñòè òåñòà--------}
writeln(output,'
5-jadval. Test topshiriqlarini ishonchligini aniqlash uchun binar matrisa
');
writeln(output,'');
writeln(output,'');
writeln(output,'¹ | ');
for j := 1 to MM do writeln(output,'',Matrix2[0,j],' | ');
writeln(output,'Juft. | ');
writeln(output,'Toq. | ');
writeln(output,' ');
for i := 1 to NN do
begin
writeln(output,'');
writeln(output,'',Matrix2[i,0],'. | ');
for j := 1 to MM do
write(output,'',NadMat[i,j],' | ');
write(output,'',NadMat[i,MM+1],' | ');
write(output,'',NadMat[i,MM+2],' | ');
writeln(output,' ');
end;
writeln(output,' ');
writeln(output,'
Test topshiriqlarining ishonchligi quyidagi uchta formulaga asoslanadi:',
'1. Sinov jarayonini 2 marta (parallel va qayta) utkazgandagi test topshiriqlarining ishonchligini baholash formulasi:',
'
',
'Sinov jarayonini utkazish uchun test topshiriqlarining yarmi(juft yoki toq nomerlari)ishtirok etganligi uchun rtning kamaytirilgan qiymati hisoblangan.. ',
'rt ning qiymatini haqoniyligini taminlash uchun Ñïèðìåí-Áðàóí formulasi qullaniladi:',
'
',
'Bunda rt’ – ning tugrilangan haqoniy qiymati ',
'2. Test topshiriqlarining ishonchligini aniqlashning boshqa bir usuli, barcha testlarning uzaro korelyatsiyasining urtachasini aniqlashga asoslangan:',
'
',
'bunda, M – test topshiriqlari soni.',
'3. KR-20 (F.Kuder va M.Richardson) - formulaga asosan:',
'
',
'bunda, M-test topshiriqlari soni, Sx2 – sinovdan utuvchilarning balini dispersiyasi.',
'
Do'stlaringiz bilan baham: |