Wimax standards and Security The Wimax



Download 2,02 Mb.
bet104/186
Sana29.05.2022
Hajmi2,02 Mb.
#619147
1   ...   100   101   102   103   104   105   106   107   ...   186
Bog'liq
CRC - WiMAX.Standards.and.Security

FIGURE 7.5
Disruption time versus M.


In addition, PHS still outperforms L2 as M 100 (largest number of MSSs) due to the effect of the appropriate centralized management in SBS. This scheme will avoid useless handover processes and transform useless messages to MSSs, which will get lower disruption times. The saving time is achieved by precoordination of reauthorization and reregistration with the TBS and remitting the time of ranging with the TBS. Therefore, the service DT of PHS is less than any other handover schemes.





7.7 Conclusion
In this chapter, we investigated a measured signal-aware mechanism for BS, which periodically monitors on moving MSSs and prepares CDMA rang- ing code for handover use beforehand. Simulation results show that PHS decreases the average service DT of the WiMAX as well as lowers han- dover failure probability of MSSs efficiently even in highly competitive circumstance. Through the derived system model expression, we present the PHS scheme to improve the lower TDT by close to 40 ms without changing the standard IEEE 802.16e standard. Specifically, in our proposed solutions the MAC protocol at both the BS and MSS do not need to be mod- ified and are readily disposable over the existing network infrastructure.

Simulations show that the PHS system model confirms the analytical results. Moreover, by considering the mobility of MSSs, the PHS scheme can be investigated further for supporting QoS among macrocells.





References

  1. I.F. Akyildiz and W. Wang, The predictive user mobility profile framework for wireless multimedia networks, IEEE/ACM Trans. Network. Vol. 12, No. 6, pp. 1021–1035, December 2004.

  2. J.B. Andersen, T.S. Rappaport, and S. Yoshida, Propagation measurements and models for wireless communications channels, IEEE Commun. Mag., Vol. 33, No. 1, pp. 42–49, January 1995.

  3. N. Banerjee, K. Basu, and S. Das, Handoff delay analysis and measurement in SIP-based mobility management in wireless networks, in Proc. Int. Parallel Distrib. Process. Symp., pp. 224–231, April 2003.

  4. J.J. Caffery and G.L. Stüber, Overview of radiolocation in CDMA cellular systems,

IEEE Commun. Mag., Vol. 36, No. 4, pp. 38–45, April 1998.

  1. C.-J. Chang, T.-T. Su, and Y.-Y. Chiang, Analysis of A cutoff priority cellular radio system with finite queueing and reneging/dropping, IEEE/ACM Trans. Network. Vol. 2, pp. 166–175, April 1994.

  2. J. Chen and W.-K. Tan, Predictive dynamic channel allocation scheme for improving power saving and mobility in BWA networks, ACM/Springer Mobile Networks and Applications (MONET), 2006.

  3. J. Chen, C.-C. Wang, and J.-D. Lee, Geographic channel assignment framework for broadband wireless access networks, IEICE Trans. Commun., Vol. E89-B, No. 11, pp. 3160–3163, November 2006.

  4. K.-H. Chiang and N. Shenoy, A 2-D random-walk mobility model for location- management studies in wireless networks, IEEE Trans. Veh. Technol., Vol. 53, No. 2, pp. 413–424, March 2004.

  5. S. Choi, G.-H. Hwang, T. Kwon, A.-R. Lim, and D.-H. Cho, Fast handover scheme for real-time downlink services in IEEE 802.16e BWA system, in Proc. IEEE VTC 2005-Spring, Vol. 3, pp. 2028–2032, Stockholm, Sweden, May 2005.

  6. T.-S. Chu and L.J. Greenstein, A quantification of link budget differences between the cellular and PCS bands, IEEE Trans. Veh. Technol., Vol. 48, No. 1, pp. 60–65, January 1999.

  7. C. Eklund, R.B. Marks, K. L. Standwood, and S. Wang, IEEE Standard 802.16: A technical overview of the wirelessman air interface for broadband wireless access, IEEE Commun. Mag., Vol. 40, No. 6, pp. 98–107, June 2002.

  8. V. Erceg, L.J. Greenstein, S.Y. Tjandra, S.R. Parkoff, A. Gupta, B. Kulic, A.A. Julius, and R. Bianchi, An empirically based path loss model for wireless channels in suburban environments, IEEE J. Select. Areas Commun., Vol. 17, No. 7, pp. 1205–1211, July 1999.

  9. V. Erceg, L.J. Greenstein, S.Y. Tjandra, S.R. Parkoff, A. Gupta, B. Kulic,

A.A. Julius, and R. Bianchi, A model for the multipath delay profile of fixed wireless channels, IEEE J. Select. Areas Commun., Vol. 17, No. 3, pp. 399–410, March 1999.



  1. C. Evci and B. Fino, Spectrum management, pricing, and efficiency control in broadband wireless communications, Proc. IEEE, Vol. 89, No. 1, pp. 105–115, January 2001.

  2. R.A. Guerin, Queueing-blocking system with two arrival streams and guard channels, IEEE Trans. Commun., Vol. 36, pp. 153–163, February 1988.

  3. IEEE 802.16 Working Group, IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Sys- tems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE Std. 802.16e–2005, February 2006.

  4. A. Kavak, M. Torlak, W.J. Vogel, and G. Xu, Vector channels for smart AntennasXMeasurements, statistical modeling, and directional properties in outdoor environments, IEEE Trans. Microwave Theory Tech., Vol. 48, No. 6, pp. 930–937, June 2000.

  5. W.K. Lai and J.C. Chiu, Improving handoff performance in wireless overlay networks by switching between two-layer IPv6 and one-layer IPv6 addressing, IEEE J. Select. Areas Commun., Vol. 23, No. 11, pp. 2129–2137, November 2005.

  6. R. Laroia, S. Uppala, and L. Junyi, Designing a mobile broadband wireless access network, IEEE Signal Process. Mag., Vol. 21, No. 5, pp. 20–28, September 2004.

  7. P.N. Pathirana, A.V. Savkin, and S. Jha, Location estimation and trajectory prediction for cellular networks with mobile base stations, IEEE Trans. Veh. Technol., Vol. 53, No. 6, pp. 1903–1913, November 2004.

  8. M. Pätzold and N. Youssef, Modelling and simulation of direction-selective and frequency-selective mobile radio channels, Int. J. Electron. Commun., Vol. 55, No. 6, pp. 433–442, December 2001.

  9. G. Plitsis, Coverage prediction of new elements of systems beyond 3G: The IEEE 802.16 system as a case study, in Proc. IEEE VTC 2003-Fall, Vol. 4, pp. 2292–2296, Orlando, Florida, October 2003.

  10. T. S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall PTR, Upper Saddle River, New Jersey, 1996.

  11. S. Tekinay and B. Jabbari, A measurement-based prioritization scheme for handovers in mobile cellular networks, IEEE J. Select. Areas Commun., Vol. 10, pp. 1343–1350, October 1992.

  12. A.E. Xhafa and O.K. Tonguz, Dynamic priority queueing of handover calls in wireless networks: An analytical framework, IEEE J. Select. Areas Commun., Vol. 22, No. 45, pp. 904–916, June 2004.

8


802.16 Mesh Networking

Download 2,02 Mb.

Do'stlaringiz bilan baham:
1   ...   100   101   102   103   104   105   106   107   ...   186




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish