12
5. Budget breakdown of the research
The proposed budget invested for this particular research work is summarized in the table
below.
Table 5. 1: BUDGET PLANNING
s.no Name of material
Unit
Quantity
/unit
Unit price in birr
Unit
price in
birr
1.
Material cost
1.1
Healthy motor
1
15000
15,000
1.2
Unhealthy motor
1
5000
5,000
1.3
Cable/wire
50
50
2,500
1.4
Sensor and protective device
5
400
2,000
1.5
Different switch
4
200
800
1.6
LCD
1
5000
5,000
total
30,300
Contingency
10%
3,030
1.
Transportation cost
2.1
From Wachemo university to sites like A.A,
Hawassa, and Tena spring and vice versa
Three in
number
3 terms
400
3,600
2.
Peridium
3.1
Data collection, analysis & consultation
15 days
3
724
32,580
3.2
Design, development & implementation
12 days
3
724
26,064
3.
Service cost
4.1
Phone service
3
500
3,000
total
98,574
13
Reference
[1]
M. Hussain, R. R. Ahmed, I. H. Kalwar, and T. D. Memon, “MULTIPLE FAULTS DETECTION AND
IDENTIFICATION OF THREE PHASE INDUCTION MOTOR USING ADVANCED,” pp. 93–117, 2020.
[2]
K. C. D. Kompella, V. Gopala, R. Mannam, and S. Rao, “Bearing fault detection in a 3-phase
induction motor using stator current frequency spectral subtraction with various wavelet
decomposition techniques,”
Ain Shams Eng. J.
, vol. 9, no. 4, pp. 2427–2439, 2018, DOI:
10.1016/j.asej.2017.06.002.
[3]
M. Z. Ali, S. Member, N. Sakib, K. Shabbir, and S. Member, “Single- and Multi-Fault Diagnosis
Using Machine Learning for Variable Frequency Drive-Fed Induction Motors,” vol. 56, no. 3,
pp. 2324–2337, 2020.
[4]
S. Altaf, M. W. Soomro, and M. S. Mehmood, “Fault Diagnosis
and Detection in Industrial
Motor Network Environment Using Knowledge-Level Modelling Technique,” vol. 2017, 2017.
[5]
S. Ding, X. H. Chang, and Q. H. Wu, “Fault diagnosis of induction motors based on RBF neural
network,”
Appl. Mech. Mater.
, vol. 462–463, pp. 85–88, 2014, DOI:
10.4028/www.scientific.net/AMM.462-463.85.
[6]
Y. J. Yoo, “Fault Detection of Induction Motor Using Fast Fourier Transform with Feature
Selection via Principal Component Analysis,”
Int. J. Precis. Eng. Manuf.
, vol. 20, no. 9, pp.
1543–1552, 2019, DOI: 10.1007/s12541-019-00176-z.
[7]
K. P. Diwatelwar and S. K. Malode, “Fault Detection and Analysis of three-phase induction
motors using MATLAB Simulink model,” pp. 1643–1649, 2018.
[8]
P. Idowu, J. Atiyeh, E. Schmitt, and A. Morales, “A Matlab ® tool for introducing basics of
induction motor current signature (IMCS) analysis,” pp. 1–10.
[9]
R. D. J. Romero-Troncoso and S. Member, “Multirate Signal Processing to Improve FFT- based
Analysis for Detecting Faults in Induction Motors,” vol. 3203, no. 733, 2016, DOI:
10.1109/TII.2016.2603968.
[10]
V. Hegde and G. S. Maruthi, “Energy Procedia Experimental investigation on detection of air-
gap eccentricity in induction motors by current and vibration signature analysis using non-
invasive sensors,” vol. 14, pp. 1047–1052, 2012, DOI: 10.1016/j.egypro.2011.12.1053.
[11]
A. C. Abhinandan, “Fault Diagnosis of an Induction Motor through Motor Current Signature
Analysis, FFT & DWT Analysis.”
14
[12]
C. Costa, “A NEW APPROACH FOR REAL-TIME FAULT DIAGNOSIS IN INDUCTION MOTORS
BASED ON A DIGITAL SIGNAL PROCESSOR EMBEDDED IN FPGA,” no. Engenharia III, pp. 182–
190, 2016.
[13]
D. Granda, D.
Arcos-aviles, and D. Sotomayor, “Analysis of signal processing techniques
commonly used for broken bars detection on induction motors,” 2018.
[14]
S. Chandan, “Multirate Signal Processing Concepts Using Simulink,” vol. 2281, pp. 25–27,
2014.
[15]
A. Sapena-bañó, M. Pineda-sanchez, R. Puche-panadero, J. Martinez-roman, and D. Mati,
“Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator
Current’ s FFT,” pp. 1–10, 2015.
[16]
M. El, H. Benbouzid, and M. Vieira, “Induction Motors’ Faults
Detection and Localization
Using Stator Current Advanced Signal Processing Techniques,” vol. 14, no. 1, pp. 14–22, 1999.