W ith answers authentic examination papers


Attitudes towards Artificial Intelligence



Download 5,97 Mb.
Pdf ko'rish
bet164/165
Sana16.02.2023
Hajmi5,97 Mb.
#911870
1   ...   157   158   159   160   161   162   163   164   165
Bog'liq
13-16

Attitudes towards Artificial Intelligence
A
Artificial intelligence (AI) can already predict the future. Police forces are using it 
to map when and w here crim e is likely to occur. Doctors can use it to predict when a 
patient is m ost likely to have a heart attack or stroke. Researchers are even trying to 
give AI im agination so it can plan for unexpected consequences.
M any decisions in our lives require a good forecast, and AI is alm ost always better 
at forecasting than we are. Yet for all these technological advances, we still seem to 
deeply lack confidence in AI predictions. Recent cases show that people do n’t like 
relying on AI and prefer to trust hum an experts, even if these experts are wrong.
If we want AI to really benefit people, we need to find a way to get people to trust 
it. To do that, we need to understand why people are so reluctant to trust AI in the 
first place.
В 
Take the case o f W atson for Oncology, one o f technology giant IB M ’s
supercom puter programs. Their attem pt to prom ote this program to cancer doctors 
was a PR disaster. The AI prom ised to deliver top-quality recom m endations on 
the treatm ent o f 12 cancers that accounted for 80% o f the w orld’s cases. But when 
doctors first interacted w ith Watson, they found them selves in a rather difficult 
situation. On the one hand, if W atson provided guidance about a treatm ent that 
coincided w ith their own opinions, physicians did not see m uch point in W atson’s 
recom m endations. The supercom puter was simply telling them what they already 
knew, and these recom m endations did not change the actual treatment.
On the other hand, if W atson generated a recom m endation that contradicted the 
experts’ opinion, doctors would typically conclude that W atson w asn’t competent. 
And the m achine w ouldn’t be able to explain why its treatm ent was plausible 
because its m achine-learning algorithm s were simply too com plex to be fully 
understood by hum ans. Consequently, this has caused even m ore suspicion 
and disbelief, leading many doctors to ignore the seem ingly outlandish AI 
recom m endations and stick to their own expertise.
С 
This is ju st one exam ple o f peo p le’s lack o f confidence in AI and their reluctance to 
accept what AI has to offer. Trust in other people is often based on our understanding 
o f how others think and having experience o f their reliability. This helps create 
a psychological feeling o f safety. AI, on the other hand, is still fairly new and 
unfam iliar to m ost people. Even if it can be technically explained (and th a t’s not 
always the case), A I’s decision-m aking process is usually too difficult for m ost 
people to comprehend. And interacting with something we don’t understand can 
cause anxiety and give us a sense that w e’re losing control.
91


Test 4
M any people are also simply not fam iliar w ith m any instances o f A l actually 
working, because it often happens in the background. Instead, they are acutely 
aware o f instances where A l goes wrong. Em barrassing A l failures receive a 
disproportionate am ount o f m edia attention, em phasising the m essage that we 
cannot rely on technology. M achine learning is not foolproof, in part because the 
hum ans who design it aren ’t.

Feelings about A l run deep. In a recent experim ent, people from a range o f 
backgrounds were given various sci-fi films about A l to w atch and then asked 
questions about autom ation in everyday life. It was found that, regardless o f w hether 
the film they watched depicted A l in a positive or negative light, simply w atching 
a cinem atic vision o f our technological future polarised the participants’ attitudes. 
O ptim ists becam e m ore extreme in their enthusiasm for A l and sceptics becam e 
even m ore guarded.
This suggests people use relevant evidence about A l in a biased m anner to support 
their existing attitudes, a deep-rooted hum an tendency known as “confirm ation 
bias” . As A l is represented m ore and m ore in m edia and entertainm ent, it could lead 
to a society split between those who benefit from A l and those who reject it. M ore 
pertinently, refusing to accept the advantages offered by A l could place a large group 
o f people at a serious disadvantage.

Fortunately, we already have some ideas about how to improve trust in A l. Simply 
having previous experience with A l can significantly improve people’s opinions 
about the technology, as was found in the study m entioned above. Evidence also 
suggests the m ore you use other technologies such as the internet, the m ore you 
trust them.
A nother solution may be to reveal m ore about the algorithm s w hich A l uses and 
the purposes they serve. Several high-profile social m edia com panies and online 
m arketplaces already release transparency reports about governm ent requests and 
surveillance disclosures. A sim ilar practice for A l could help people have a better 
understanding o f the way algorithm ic decisions are made.

R esearch suggests that allowing people some control over A l decision-m aking could 
also improve trust and enable A l to learn from hum an experience. For example, 
one study showed that when people were allowed the freedom to slightly m odify an 
algorithm , they felt m ore satisfied with its decisions, m ore likely to believe it was 
superior and m ore likely to use it in the future.
We d o n ’t need to understand the intricate inner w orkings o f A l systems, but if
people are given a degree o f responsibility for how they are implemented, they will 
be m ore w illing to accept A l into their lives.
92



Download 5,97 Mb.

Do'stlaringiz bilan baham:
1   ...   157   158   159   160   161   162   163   164   165




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish