Воздухопроницаемость – способность материала ограждения зданий про-пускать через свою толщину воздух. Она характеризуется коэффициентом воздухопроницаемости i, г/(м·ч·Па), который равен количеству воздуха, в граммах Vρ (V – объем воздуха в см3; ρ – средняя плотность воздуха, г/см3, проходящего через материал ограждения толщиною δ = 1 м, площадью S = 1 м2, за время τ = 1 ч при разности парциальных давлений р1 – р2 = 133,3 Па .
i = Vρδ / [Sτ · (р1 – р2)].
Воздух проникает в направлении от большего давления к меньшему. Это явление называется фильтрацией. Фильтрация, происходящая от наружного воздуха ограждения в помещение, называется инфильтрацией, из помещения наружу – эксфильтрацией.
Воздухопроницаемость обеспечивает естественную вентиляцию помещений. Это положительное явление. В зимнее время инфильтрация приводит к потере тепла. В этом проявляется ее отрицательное свойство.
Атмосферостойкость – способность материалов в процессе эксплуатации сохранять свои первоначальные свойства после длительного воздействия атмосферных факторов (колебаний температуры, солнечной радиации, воздуха, увлажнения).
Морозостойкость – способность материалов в водонасыщенном состоянии не разрушаться при многократном попеременном замораживании и оттаивании.
Разрушение происходит из-за того, что объем воды при переходе в лед увеличивается на 9 %. Давление льда на стенки пор вызывают растягивающие усилия в материале.
Морозостойкость материалов зависит от их плотности и степени заполнения пор водой.
Часто наблюдаются случаи разрушения от недостаточной морозостойкости бетонных бортовых камней, цементобетонных покрытий автомобильных дорог, бетона зоны переменного уровня воды мостовых опор и гидротехнических сооружений.
Теплопроводность – способность материалов проводить тепло. Теплопередача происходит в результате перепада температур между поверхностями, ограничивающими материал. Теплопроводность λ, Вт/(м∙°С), равна количеству тепла Q, Дж, проходящего через материал толщиной δ = 1 м, площадью S = 1 м2 за время τ = 1 ч при разности температур между поверхностями T1 – T2 = 1 °C;
λ = Qδ / [Sτ (t1 – t2)].
Теплопроводность материалов зависит от их средней плотности, химического состава, структуры, характера пор, влажности, температуры.
Наиболее существенное влияние на теплопроводность оказывает средняя плотность материалов. При известной средней плотности, пользуясь нижеприведенной формулой, можно ориентировочно вычислить теплопроводность, λ, Вт/ (м·°С), материала в воздушно-сухом состоянии
____________________
λ = 1,163· ( √ 0,0196 + 0,22ρ2с – 0,16).
Эта формула дает удовлетворительные результаты при средней плотности материалов от 2500 до 2700 кг/м3.
Значительно возрастает теплопроводность материалов с увлажнением. Это объясняется тем, что теплопроводность воды составляет 0,58 Вт/(м · °С), а воздуха 0,023 Вт/(м · °С), т. е. превышает его в 25 раз. Еще больше теплопроводность льда. Она составляет 2,3 Вт/(м · °С).
С повышением температуры теплопроводность большинства материалов увеличивается и лишь у некоторых (металлов, магнезитовых огнеупорных материалов) уменьшается.
Теплопроводность материала оказывает влияние на термическое сопротивление ограждения, например наружной стены здания, чердачного перекрытия. Термическое сопротивление ограждения R, м2 · °С/ Вт, определяется по формуле
R = δ / λ,
где δ – толщина ограждения, м; λ – теплопроводность, Вт/(м · °С).
Термическое сопротивление слоя ограждения прямо пропорционально его толщине и обратно пропорционально теплопроводности его материала.
Do'stlaringiz bilan baham: |