Matematika
1913942
TEST VARIANTI RAQAMI:
1913942
MATEMATIKA
Ushbu test varianti 30 ta test topshirig‘idan iborat.
Uni bajarishga
1 soat vaqt belgilash tavsiya etiladi. Natijani bilish uchun javoblaringizni
javoblar varaqasiga belgilab, rasmini
@dtmxizmatbot
orqali jo‘nating.
Sizga omad tilaymiz!
Test varianti raqamini javoblar varaqasiga to‘g‘ri ko‘chiring!
1 9 1 3 9 4 2
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
1.
y
=
f
(
x
)
funksiya grafigidan foydalanib,
(
−
2; 6)
oraliqda
f
(
x
)
·
f
0
(
x
) = 0
tenglamaning barcha
yechimlari to‘plamini toping.
x
y
−
3
−
2
−
1
1
2
3
5
6
−
1
1
3
4
0
y
=
f
(
x
)
A)
{−
1; 3; 5
}
B)
{−
1; 2; 3; 4; 5
}
C)
{−
1; 0; 2; 3; 5
}
D)
{−
1; 1; 3; 4; 5
}
2.
Tengsizlikni yeching:
|
x
−
6
| ·
log
1
3
(
x
−
2) + 1
<
0
.
A)
(5; 6)
∪
(6;
∞
)
B)
(2; 6)
∪
(6;
∞
)
C)
(5;
∞
)
D)
(2; 5)
3.
f
(
x
) =
x
2
−
x
2
va
g
(
x
) =
6
x
−
5
+ 5
berilgan.
Agar
a
=
f
(5)
,
b
=
g
(6)
bo‘lsa, quyidagi
tengsizlikalardan qaysi biri to‘g‘ri?
A)
9
a
<8
b
B)
12
a
<11
b
C)
10
a
<9
b
D)
13
a
>12
b
4.
Uchlari
Oxy
tekisligining
(0; 0)
,
(3; 0)
,
(2; 3)
va
(0; 3)
nuqtalarida bo‘lgan trapetsiyani
Oy
o‘qi
atrofida aylantirishdan hosil bo‘lgan jismning
hajmini toping.
A)
12
π
B)
19
π
C)
7
π
D)
18
π
5.
1 dan 1000 gacha bo‘lgan natural sonlarning
nechtasi 17 ga qoldiqsiz bo‘linadi?
A)
59
B)
58
C)
57
D)
56
6.
(2
x
−
1)
2
·
(2
x
+ 1)
2
algebraik ifoda
quyidagilardan qaysi biriga aynan teng?
A)
16
x
4
−
8
x
2
+ 1
B)
16
x
4
+ 4
x
2
+ 1
C)
16
x
4
+ 8
x
2
+ 1
D)
16
x
4
−
4
x
2
+ 1
7.
Hisoblang:
111
333
+
222
666
+
333
999
A)
1,5
B)
1
C)
1,6
D)
2
8.
Hisoblang:
1
2
−
√
3
−
1
2 +
√
3
!
·
√
12
−
√
75
A)
−
18
B)
−
12
C)
−
15
D)
−
9
9.
Faqat 3 ta natural bo‘luvchiga ega bo‘lgan ikki
xonali natural sonlarning eng kattasini toping.
A)
46
B)
51
C)
49
D)
81
10.
6
x > x
2
4
x
2
≤
25
tengsizliklar sistemasining butun
yechimlari yig‘indisini toping.
A)
3
B)
12
C)
7
D)
4
11.
Agar
a
=
2
3
bo‘lsa,
a
+ 4
a
2
−
5
a
·
s
a
2
−
10
a
+ 25
a
2
+ 8
a
+ 16
−
2
1
2
ifodaning
qiymatini toping.
A)
−
1
1
2
B)
−
2
1
2
C)
−
4
D)
−
1
c
Davlat test markazi, 2019
1
1913942
Matematika
12.
Rasmda
ABC
teng yonli
(
AB
=
BC
)
uchburchak tasvirlangan. Bunda
BD
⊥
AC
,
DE
⊥
BC
va
EF
||
AC
. Agar
AB
=11 va
CD
=5
bo‘lsa,
EF
ni toping.
A
B
C
D
E
F
G
A)
960
121
B)
810
121
C)
1000
121
D)
840
121
13.
A
=
{
x
|
x
= 4
n
+ 3
, n
∈
N
}
,
B
=
{
x
|
x
= 6
n
+ 5
, n
∈
N
}
bo‘lsa,
A
∩
B
to‘plamni aniqlang.
A)
{
x
|
x
= 12
n
+ 11
, n
∈
N
}
B)
{
x
|
x
= 24
n
−
13
, n
∈
N
}
C)
{
x
|
x
= 24
n
−
1
, n
∈
N
}
D)
{
x
|
x
= 12
n
−
1
, n
∈
N
}
14.
f
(
x
) =
(
x
+ 8)
4
+ (
x
−
6)
4
2
funksiyaning eng
kichik qiymatini toping.
A)
8
4
B)
7
4
C)
6
4
D)
8
4
+ 6
4
2
15.
Ushbu
3
n
2
+ 2
n
−
18
n
kasrning qiymati natural
son bo‘ladigan
n
(
n
∈
N
)
ning barcha
qiymatlari yig‘indisini toping.
A)
38
B)
33
C)
36
D)
39
16.
Agar
0
< α
,
β <
π
2
lar uchun
tgα
=
1
7
va
sinβ
=
1
√
10
bo‘lsa,
tg
(
α
+ 2
β
)
ni hisoblang.
A)
√
3
B)
0
C)
1
D)
√
3
3
17.
α
tekislik va uni kesib o‘tadigan
AB
kesma
berilgan. Kesmaning uchlaridan
α
tekislikkacha
bo‘lgan masofalar
AA
1
=12 cm,
BB
1
=13 cm
bo‘lsa,
AB
kesmani
A
uchidan boshlab
hisoblaganda 3:2 nisbatda bo‘luvchi
C
nuqtadan
α
tekislikkacha bo‘lgan masofani
(cm) toping.
A)
3,2
B)
4
C)
3
D)
3,6
18.
x
−
25
5 +
√
x
+
x
2
−
6
√
6
−
x
ifodaning
x
= 6
dagi
qiymatini toping.
A)
1
B)
−
2
√
6
C)
−
11
D)
−
1
19.
Bitta daftar 600 so‘m va u bitta qalamning
narxidan 400 so‘mga qimmat. O‘quvchi
3600 so‘mga daftarlar va qalamlar sotib oldi.
Quyida keltirilgan sonlardan qaysi biri xarid
qilingan qalamlarning soni bo‘la oladi?
A)
1
B)
3
C)
5
D)
4
20.
ABC
uchburchakning
AC
tomonidan
D
nuqta
shunday olinganki, bunda
BD
=
DC
(rasm).
Agar
∠
BAC
= 33
◦
va
∠
BDC
= 42
◦
bo‘lsa,
∠
ABC
ni toping.
A
B
C
D
A)
75
◦
B)
79
◦
C)
80
◦
D)
78
◦
21.
Tenglamani yeching:
x
+ 3
4
2
−
1
+
x
+ 3
6
2
−
1
+
x
+ 3
8
2
−
1
+
...
+
x
+ 3
100
2
−
1
=
49
101
A)
0
B)
−
1
3
C)
−
3
D)
2
22.
Koordinata o‘qlarining (3; 0) va (0; 4)
nuqtalaridan o‘tadigan chiziqli fuksiyani toping.
A)
y
=
4
3
x
−
4
B)
y
=
−
4
3
x
−
4
C)
y
=
4
3
x
+ 4
D)
y
=
−
4
3
x
+ 4
23.
y
=
√
2
2
x
−
3
·
2
x
+1
−
16
funksiyaning
aniqlanish sohasini toping.
A)
x
≥
3
B)
x
≤
1
, x
≥
4
C)
x
≤
2
, x
≥
3
D)
x
≥
2
24.
6
R
5
(
x
−
5)
4
·
xdx
integralni hisoblang.
A)
1
1
9
B)
1
1
8
C)
1
1
6
D)
1
1
7
25.
2
x
2
+ 6
−
√
3
x
= 3
√
3
tenglamaning eng
katta ildizini toping.
A)
3
B)
0
,
5
√
3
C)
√
3
D)
2
√
3
26.
To‘g‘ri burchakli uchburchakning o‘tkir
burchagi
60
◦
. Shu burchakka yopishgan kateti
uzunligi
2
√
13
cm ga teng bo‘lsa, uning eng
katta medianasi uzunligini (cm) toping.
A)
2
√
13
B)
3
√
13
C)
13
D)
√
91
27.
Agar
¯
a
(
x
; 2)
va
b
(5;
y
)
o‘zaro kollinear
vektorlar bo‘lsa,
2
xy
−
3
ning qiymatini toping.
A)
13
B)
3
C)
17
D)
7
28.
6 kishidan 4 ta kishini va bu 4 kishidan 2
kishini necha xil usulda tanlab olish mumkin?
A)
144
B)
60
C)
90
D)
120
c
Davlat test markazi, 2019
2
Matematika
1913942
29.
To‘rtinchi hadi 20 ga teng bo‘lgan arifmetik
progressiyaning dastlabki o‘n yettita hadi
yig‘indisi 680 ga teng. Progressiyaning oltinchi
hadini toping.
A)
28
B)
18
C)
23
D)
24
30.
Hisoblang:
tg
π
−
arccos
√
2
2
!
.
A)
−
1
B)
1
C)
√
3
3
D)
−
√
3
3
Test varianti “Test topshiriqlari to‘plami 2019” asosida shakllantirilgan:
1 – 78-bet 12
2 – 57-bet 19
3 – 76-bet 66
4 – 113-bet 55
5 – 16-bet 3
6 – 46-bet 20
7 – 11-bet 14
8 – 26-bet 39
9 – 7-bet 1
10 – 68-bet 19
11 – 50-bet 48
12 – 105-bet 106
13 – 121-bet 16
14 – 84-bet 59
15 – 14-bet 48
16 – 44-bet 92
17 – 108-bet 16
18 – 25-bet 31
19 – 21-bet 47
20 – 92-bet 18
21 – 63-bet 44
22 – 71-bet 16
23 – 52-bet 1
24 – 86-bet 16
25 – 62-bet 29
26 – 97-bet 56
27 – 114-bet 3
28 – 124-bet 16
29 – 31-bet 16
30 – 38-bet 42
c
Davlat test markazi, 2019
3
9>11>8>
Do'stlaringiz bilan baham: |