Список литературы:
1.
Lešnik L., Kegl B., Torres-Jiménez E., Cruz-Peragón F.(2020) Why we should invest further in the development
ofinternal combustion engines for road applications,OilGasSci. Technol. - Rev. IFP Energiesnouvelles75, 56.
2.
Maity S., James O.O., Chowdhury B., Auroux A. (2014)Effect of copper on calcium-modified alumina-supportedcobalt
catalysts towards Fischer–Tropsch synthesis,Curr.Sci.106, 1538–1547.
3.
Abbasi S., Abbasi M., Tabkhi F., Akhlaghi B. (2020) Syngasproduction plus reducing carbon dioxide emission using
dryreforming of methane: utilizing low-cost Ni-based catalysts,Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles75, 22.
4.
Yu L., Liu X., Fang Y., Wang C., Sun Y. (2013) Highly activeCo/SiCcatalysts with controllable dispersion and
reducibilityfor Fischer–Tropsch synthesis,Fuel112,483–488.
5.
Yao M., Yao N., Shao Y., Han Q., Ma C., Yuan C., Li C., Li X.(2014) New insight into the activity of ZSM-5
supported Coand Co-Rubifunctional Fischer–Tropsch synthesis catalyst,Chem. Eng. J.239, 408–415.
6.
Tursunov O., Kustov L., Kustov A. (2017) A brief review ofcarbon dioxide hydrogenation to methanol over copper
andiron based catalysts,Oil Gas Sci. Technol. - Rev. IFPEnergies nouvelles72, 30.
7.
Jacobs G., Das T.K., Zhang Y., Li J., Racoillet G., Davis B.H.(2002) Fischer–Tropsch synthesis: support, loading,
andpromoter effects on the reducibility of cobalt catalysts,Appl.Catal. A: Gen.233,263–281.
8.
Jacobs G., Ji Y., Davis B.H., Cronauer D., Kropf A.J.,Marshall C.L. (2007) Fischer–Tropsch synthesis: Temperature
programmed EXAFS/XANES investigation oftheinfluence of support type, cobalt loading, and noble metalpromoter
addition to the reduction behavior of cobalt oxide,Appl. Catal. A: Gen.333, 177–191.
9.
Bessell B. (1993) Support effects in cobalt-based Fischer–Tropsch catalysis,Appl. Catal. A: Gen.96, 253–268.
10.
Spadaro L., Arena F., Granados M.L., Ojeda M., Fierro J.L.G.,Frusteri F. (2005) Metal support interactions and re-
activity ofCo/CeO2catalysts in the Fischer–Tropsch synthesis reaction,J. Catal.34, 451–462.
11.
Wang H., Willot F., MoreaudM., Rivallan M.,Sorbier L.,Jeulin D. (2017) Numerical simulation of hindered diffu-
sioninc-alumina catalyst supports,Oil Gas Sci. Technol. - Rev.IFP Energies nouvelles72,8.
12.
Storsæter S., Tøtdal B., Walmsley J.C., TanemnB.S.,Holmen A. (2005) Characterization of alumina, silica, andtita-
nia-supported cobalt Fischer–Tropsch catalysts,J. Catal.236, 139–152.
13.
Schanke D., Vada S., Blekkan E.A., Hilmen A.M., Hoff A.,Holmen A. (1995) Study ofPt-Promoted Cobalt COHy-
drogenation Catalysts,J. Catal.156,85–95.
14.
Vada S., Hoff A., Adnanes E., Schanke D., Holmen A. (1995)Fischer–Tropsch synthesis on supported cobalt cata-
lystspromoted by platinum and rhenium,Top. Catal.2, 155–162.
15.
Xu D., Li W., Duan H., Ge Q., Xu H. (2005) Reactionperformance and characterization of Co/Al
2
O
3
Fischer–Tropsch
catalysts promoted with Pt, Pd and Ru,Catal.Lett.102, 229–235.
16.
Lapidus A.L., Tsapkina M.V., Krylova A.Y. (2005) Bimetallic cobalt catalysts for the synthesis of hydrocarbons
fromCO and H
2
,Russ. Chem. Rev.74, 577–586.
17.
Zhong, L.; Yu, F.; An, Y.; Zhao, Y.; Sun, Y.; Li, Z.; Lin, T.; Lin,Y.; Qi, X.; Dai, Y.; Gu, L.; Hu, J.; Jin, S.; Shen, Q.;
Wang, H. Cobaltcarbidenanoprisms for direct production of lower olefins from syngas.Nature2016,538(7623), 84−87.
18.
Jiao, F.; Pan, X.; Gong, K.; Chen, Y.; Li, G.; Bao, X. Shape-selective zeolites promote ethylene formation from
syngas via a keteneintermediate.Angew. Chem., Int. Ed.2018,57(17), 4692−4696.
19.
Zhai P.; Xu C.; Gao R.; Liu X.; Li M.; Li W.; Fu X.; Jia C.;Xie J.; Zhao M.; Wang X.; Li Y.; Zhang Q.; Wen X.;
Ma D. Highlytunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe
5
C
2
catalyst.Angew.
Chem., Int. Ed.2016,55(34), 9902−9907.
20.
Luk H.T.; Mondelli C.; Ferré D.C.; Stewart J.A.; Pérez-Ramírez, J. Status and prospects in higher alcohols synthesis
fromsyngas.Chem. Soc. Rev.2017,46(5), 1358−1426.
21.
Lin T.; Qi X.; Wang X.; Xia L.; Wang C.; Yu F.; Wang H.; Li S.; Zhong L.; Sun Y. Direct production of higher ox-
ygenates viasyngas conversion over a multifunctional catalyst.Angew. Chem., Int.Ed.2019,58(14), 4627−4631.
22.
Bobomurodova S.Y., Fayzullaev N.I., Usmanova K.A. Catalytic aromatization of oil satellite gases//International
Journal of Advanced Science and Technology, 2020, 29(5), стр. 3031–3039.
23.
Fayzullaev N.I., Bobomurodova S.Y., Avalboev G.A. Catalytic change of C
1
-C
4
-alkanes//International Journal of
Control and Automation, 2020, 13(2), стр. 827–835
24.
Mamadoliev I.I., Fayzullaev N.I., Khalikov K.M. Synthesis of high silicon of zeolites and their sorption properties//
International Journal of Control and Automation, 2020, 13(2), стр. 703–709.
25.
Mamadoliev I.I., Fayzullaev N.I. Optimization of the activation conditions of high silicon zeolite//International Jour-
nal of Advanced Science and Technology, 2020, 29(3), стр. 6807–6813
26.
Fayzullaev N.I, Bobomurodova S.Y, Xolmuminova D.A Physico-chemical and texture characteristics of
Zn-Zr/VKTS catalyst//Journal of Critical Reviews, 2020, 7(7), стр. 917–920
27.
Aslanov S.C., Buxorov A.Q., Fayzullayev N.I. Catalytic synthesis of С
2
-С
4
-alkenes from dimethyl ether// Interna-
tional Journal of Engineering Trends and Technology, 2021, 69(4), стр. 67–75.
28.
F.N. Temirov., J. Kh. Khamroyev., N.I. Fayzullayev., G. Sh. Haydarov and M. Kh. Jalilov. Hydrothermal synthesis
of zeolite HSZ-30 based on kaolin// IOP Conf. Series: EarthandEnvironmentalScience 839 (2021) 042099. IOP
Publishing doi:10.1088/1755-1315/839/4/042099.
№ 12 (93)
декабрь, 2021 г.
__________________________
Библиографическое описание: Лутфуллаев С.Ш., Бекназаров Э.М. ИССЛЕДОВАНИЕ ФИЗИКО- ХИМИЧЕСКИХ
И МЕХАНИЧЕСКИХ СВОЙСТВ ПОЛИМЕРОВ ИЗ ПРОМЫШЛЕННЫХ ОТХОДОВ ПРИ ИХ ВТОРИЧНОЙ
ПЕРЕРАБОТКЕ // Universum: технические науки : электрон. научн. журн. 2021. 12(93).
URL:
https://7universum.com/ru/tech/archive/item/12769
Do'stlaringiz bilan baham: |