Umumiy matematika


- §. O’rinalmashtirishlar



Download 1,62 Mb.
bet5/15
Sana10.07.2022
Hajmi1,62 Mb.
#772203
1   2   3   4   5   6   7   8   9   ...   15
Bog'liq
kombinatorika mavzusini akademik

- §. O’rinalmashtirishlar



Ta`rif 2. Agar m elementdan to m gacha bog`lanishlar faqat bo`yicha elementlardan farqlansa, u holda bunday bog`lanishlar o`rinalmashtirish deb ataladi.
Masalan M to`plamdan 3 ta element larni ajratib olamiz. Bu elementlardan mumkin bo`lgan o`rinalmashtirishlarni tuzamiz. m elementlarda tuzilgan o`rinalmashtirishlar soni ko`rinishda ifodalaymiz.Bu yerda P rfkash fransuzcha “Permo`tation” so`zidan olingan bo`lib o`rinalmashtirish so`zini bildiradi.
Keltirilgan misollardan ekanligi kelib chiqadi.Shuni belgilash lozimki, P1=1, P2=2.
Teorema 2. m elementlardan tashkil topgan o`rinalmashtirishlar soni
(8)
ga teng.Bu yerda ! “faktarial” deb o`qiladi.
Isbot. m elementdan tashkil topgan o`rinalmashtirishlar soni, m elementlardan to m gacha tashkil topgan o`rinalmashtirishlar soni bir-biriga tengligi ko`rish qiyin emas.
Shuning uchun (4) formulani n=m ga tatbiq qilib
ga ega bo`lamiz.



    1. - §. Gruppalashlar va ularning xossalari



Ta`rif 3. Agar elementdan to m gacha tashkil etilgan bog`lanish faqatgina 1 ta element bilan farqlansa, u holda bunday bog`lanishlar n elementdan to m gacha kombinasiya deb ataladi.
Masalan. 3 elementdan mumkin bo`lgan 2 tadan kombinasiya tuzamiz:

n elementdan to m gacha tuzilgan kombinasiyalar
(9)
formula yordamida hisoblanadi.
Isbot. n elementdan to m gacha tashkil topilgan mumkin bo`lgan kombinasiyalarni bir satrga yozamiz.
Har qaysi kombinasiya ostidan mumkin bo`lgan m elementdan o`zgarishlarni tashkil qilamiz.U holda biz bog`lanishlar jadvalini olamiz.Bu bog`lanishlar ustun va qatorlardan tashkil topilgan.n elementdan to m gacha tuzilgan to`plam o`rinlashtirishlar umumiy bog`lanishlar sonini beradi ya`ni jadvaldan olingani.Shunday qilib,

bu yerdan (9) ni hosil qilamiz.
Bu muhokamani keyingi misolimizda qo`llashimiz mumkin. elementlarni lamiz va mumkin bo`lgan 3 tadan kombinasiyani tuzamiz:


P3

Jadvaldan ko`rinib turibdiki,





Kombinasiyalar quyidagi xossalarga ega:
1) (10)
Haqiqatan ham (9),(8) va (4) formulalardan quyidagilarni olamiz:

2) (11)
(11) ni hosil qilish uchun (10) dagi m o`rniga n-m ni qo`yish mumkin.
3) Hisoblash asosida biz





(12)
larni olamiz.
Quyidagi ayniyat o`rinlidir:
(13)
Isbot. (12) ning xossasidan ahnvfdftshib quyidagi ayniyatlarni yozamiz:



Bu ayniyatlarni e`tiborga olsak, biz (13) ayniyatni olamiz.


Quyidagi ayniyat o`rinlidir


(14)

Bu ayniyat (11) va (13) lardan kelib chiqadi.


6) Arifmetik uchburchak.
(12) formula ning qiymatini topishda yordam beradi,agar qiymatlari ma`lum bo`lsa.Hisoblashni quyidagi ko`rinishda yozish qulay:
1
1 2 1
1 3 3 1
………..……………..
……………….……………..

Jadvalning n+1 ustunida raqamlar tartib bilan joylashgan. Shuning uchun


.
Qolgan raqamlar (12) formulada joylashgan.
Qanchalik joylashgan jadvalda ustunlar tepada, tepadagi ustunda chapdagi va o`ngdan joylashgan. keyingi ustunga chapdan va o`ngdan joylashtirish kerak.
Masalan 5 chi qatordagi 4 va 6 ni joylashtirishimiz natijasida, 6 chi qatordagi 10 raqamini hosil qilamiz.
Bilamizki shunaqa jadval matematiklar tomonidan topilgan.Bo`lar Ulug`bek abservatoriyasida ishlashgan (Samarqand shahrida) G`iyosiddin Koshiy (1420 yillar atrofida), shoir va matemetik Umar Hayom (1040-1123).Italyalik matematik Nikolayu Tartale (1500-1557),Fransiya matemetigi va fizigi Blez Paskal (1623-1662)
keng qo`llashgan bu jadvalni.



    1. Download 1,62 Mb.

      Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   15




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish