3. Классификация задач. Сначала необходимо определить тот признак, по которому будем классифицировать.
По содержанию задачи делятся на практические (задачи с практическим содержанием) и математические. При решении практических задач используется метод математического моделирования, его суть в следующем: а) переводим реальную ситуацию на математический язык и строим математическую модель; б) работаем внутри математической модели и получаем результат; в) переводим обратно на реальный язык или интерпретируем результат. При решении математической задачи используется только второй этап.
По требованию выделяют задачи на доказательство, на построение и на вычисление.
По характеру мыслительной деятельности различают стандартные и нестандартные задачи. К стандартным относятся задачи, которые имеют определенный алгоритм решения (алгоритмически разрешимые задачи). Задачи, не имеющие общего алгоритма решения, называются нестандартными. Нестандартные задачи имеют отчетливо выраженную развивающую функцию. Функции решаемой стандартной задачи зависят от того, какими теоретическими знаниями обладают учащиеся к моменту ее решения. Если учащимся известен алгоритм решения этой задачи, то ее можно считать шаблонной. Если к моменту решения стандартной задачи общий метод ее решения не известен, то такая задача является нешаблонной (при ее решении необходимо обнаружить общий метод решения или применить какой-либо искусственный прием). Нестандартные и нешаблонные задачи (вследствие общности их функции в обучении) можно объединить в одну группу - группу творческих задач.
По целям применения задач в учебном процессе выделяют задачи подготовительные, задачи на закрепление, на приобретение новых знаний, на развитие мышления.
4. Обучение поиску решения задач. Анализ и синтез при решении задач. Анализ и синтез находят широкое применение при решении математических задач. Напомним, что анализ - это метод рассуждений от искомых к данным. Синтез - метод рассуждений, ведущий от данных к искомым. Оба эти метода обычно применяются во взаимосвязи.
Анализ и синтез находят применение практически при решении каждого вида задач, каждой задачи.
1) Анализ и синтез при решении задач на доказательство.
2) Анализ и синтез при решении текстовых задач. Текстовыми задачами здесь названы математические задачи, в которых входная информация содержит не только математические данные, но еще и некоторый сюжет (фабулу задачи).
При решении текстовых задач с помощью аппарата арифметики роль анализа сводится к составлению плана решения, задача же чаще всего решается синтетическим методом.
3) Анализ и синтез при решении задач на построение в геометрии. Анализ и синтез применяются и при решении задач на построение в геометрии, иначе, конструктивных задач геометрии. Как известно, решение этих задач выполняется по следующему плану: анализ, построение, доказательство, исследование. Название первой части - анализ говорит само за себя: это действительно метод анализа, ведущий от искомых ("предположим, что искомая фигура построена") к данным, точнее, к их использованию в построении. При анализе намечается план построения, которое выполняется синтетическим путем. При доказательстве возможно использование как анализа, так и синтеза, но чаще применяется последний. Исследование предполагает преимущественное применение метода анализа.
Do'stlaringiz bilan baham: |