Перегородки, прокладки. В кожухотрубчатых теплообменниках устанавливают поперечные и продольные перегородки.
Поперечные перегородки, размещаемые в межтрубном пространстве теплообменников, предназначены для организации движения теплоносителя в направлении, перпендикулярном оси труб, и увеличения скорости теплоносителя в межтрубном пространстве. В обоих случаях возрастает коэффициент теплоотдачи на наружной поверхности труб.
Поперечные перегородки устанавливают и в межтрубном пространстве конденсаторов и испарителей, в которых коэффициент теплоотдачи на наружной поверхности труб на порядок выше коэффициента на их внутренней поверхности. В этом случае перегородки выполняют роль опор трубного пучка, фиксируя трубы на заданном расстоянии одна от другой, а также уменьшают вибрацию труб.
Вибрация труб обычно не вызывает серьезных неприятностей, если теплоноситель в межтрубном пространстве является вязкой жидкостью и достаточно хорошо демпфирует колебания труб. Известны, несколько конструкций поперечных перегородок: с сегментным (рис. 5.1, а), секторным (рис. 5.1, б) и щелевым (рис. 5.1, в) вырезами, с чередованием дисков и колец (рис. 5.1, г).
Наиболее широко в мировой практике применяют сегментные перегородки. Высота вырезаемого сегмента равна примерно 1/3 диаметра аппарата, а расстояние между перегородками - около 0,5 диаметра аппарата.
Аппараты со сплошными перегородками используют обычно для чистых жидкостей. В этом случае жидкость протекает по кольцевому зазору (около 1,5 мм) между трубой и перегородкой (рис. 4.1, д). В зазорах между перегородкой и трубами поток сильно турбулизуется, что приводит к уменьшению толщины ламинарного пограничного слоя и, как следствие, увеличению коэффициента теплоотдачи на наружной поверхности труб.
Интенсификация теплообмена поперечными перегородками может значительно снижаться из-за утечек теплоносителя в зазорах между корпусом и перегородками. Для уменьшения утечек устанавливают следующие ограничения. При наружном диаметре кожуха аппарата не более 600 мм зазор между корпусом и перегородкой не должен превышать 1,5 мм. В остальных случаях диаметр поперечных перегородок выбирают по соответствующим нормативным документам.
Для уменьшения зазоров между корпусом и поперечными перегородками иногда используют упругие уплотняющие кольца 1, закладываемые в паз перегородки. В межтрубном пространстве теплообменников в ряде случаев устанавливают и продольные перегородки. Толщина продольных перегородок трубного пучка, распределительных камер и крышек должна быть не менее 6 мм.
5.2. ИНТЕНСИФИКАЦИЯ ПРОЦЕССА ТЕПЛООБМЕНА В КОЖУХОТРУБЧАТЫХ ТЕПЛООБМЕННИКАХ
Проблема интенсификации работы кожухотрубчатых теплообменников связана главным образом с выравниванием термических сопротивлений на противоположных сторонах теплообменной поверхности. Этого достигают либо увеличением поверхности теплообмена F, например оребрением ее со стороны теплоносителя с меньшим коэффициентом теплоотдачи либо увеличением коэффициента теплоотдачи рациональным подбором гидродинамики теплоносителя. Последнее должно приводить к выравниванию скоростей и температур по сечению потока теплоносителя и, следовательно, к уменьшению термического сопротивления его пограничного слоя. Результаты исследований показывают, что именно сопротивление пограничного слоя является главным фактором, снижающим интенсивность теплопередачи. Рассмотрим два случая теплопередачи, при которых термическое сопротивление определяется межтрубным и трубным пространствами. В первом случае наибольший эффект теплопередачи достигается при поперечном смывании пучка труб, расположенных в шахматном порядке. При этом если критерий Рейнольдса Re = 120 ... 1000, в межтрубном пространстве создается устойчивый турбулентный режим движения, а ламинарный пограничный слой теплоносителя сохраняется лишь на небольшом участке поверхности труб.
Теплообмен значительно улучшается также при ликвидации застойных зон в межтрубном пространстве. Особенно часто такие зоны образуются вблизи трубных решеток, поскольку штуцера ввода и вывода теплоносителя из межтрубного пространства расположены на некотором расстоянии от них. Для интенсификации теплообмена иногда используют турбулизаторы - элементы, турбулизирующие или разрушающие пограничный слой теплоносителя на наружной поверхности труб.
Эффект теплоотдачи на наружной поверхности труб существенно повышают кольцевые канавки, интенсифицирующие теплообмен в межтрубном пространстве примерно в 2 раза турбулизацией потока в пограничном слое.
В теплообменниках с передачей теплоты от жидкости в трубном пространстве к вязкой жидкости или газу в межтрубном пространстве коэффициенты теплоотдачи с наружной стороны труб примерно на порядок меньше, чем с внутренней стороны. Например, в газожидкостных теплообменниках коэффициент теплоотдачи со стороны жидкости может достигать 6 кВт/(м2·К), а со стороны газа не превышает 0,1 кВт/(м2·К). Естественно, что применение гладких труб в таких теплообменниках приводит к резкому увеличению их массы и размеров. Стремление интенсифицировать теплоотдачу со стороны малоэффективного теплоносителя (газы, вязкие жидкости) привело к разработке различных конструкций оребренных труб.
Установлено, что оребрение увеличивает не только теплообменную поверхность, но и коэффициент теплоотдачи от оребренной поверхности к теплоносителю вследствие турбулизации потока ребрами. При этом, однако, надо учитывать возрастание затрат на прокачивание теплоносителя. Применяют трубы с продольными (рис. 5.2, а) и разрезными (рис. 5.2, б) ребрами, с поперечными ребрами различного профиля (рис. 5.2, в). Оребрение на трубах можно выполнить в виде спиральных ребер (рис. 5.2, г), иголок различной толщины и др.
Эффективность ребра, которую можно характеризовать коэффициентом теплоотдачи, зависит от его формы, высоты и материала. Если требуется невысокий коэффициент теплоотдачи, необходимую эффективность могут обеспечить стальные ребра, при необходимости достижения больших коэффициентов целесообразно применение медных или алюминиевых ребер. Эффективность ребра резко снижается, если оно не изготовлено за одно целое с трубой, не приварено или не припаяно к ней. Если термическое сопротивление определяется трубным пространством, используют методы воздействия на поток устройствами, разрушающими и турбулизирующими внутренний пограничный слой. Это различного рода турбулизирующие вставки (спирали, диафрагмы, диски) и насадки (кольца, шарики), помещаемые в трубу. Естественно, что при этом возрастает гидравлическое сопротивление трубы.
Турбулизирующие вставки в виде диафрагмы (рис. 5.3, а) размещают в трубе на определенном расстоянии одна от другой. При наличии таких вставок переход к турбулентному течению в трубах происходит при Re = 140 (для труб без вставок при Re = 2300), что позволяет приблизительно в 4 раза интенсифицировать теплообмен. Вставки в виде дисков с определенным шагом укрепляют на тонком стержне, вставленном в трубы. По своему воздействию на поток такие вставки близки к диафрагмам. Спиральные вставки (рис. 5.3, в) обычно изготовляют из тонких алюминиевых или латунных лент. При низких значениях Re они позволяют повысить коэффициент теплоотдачи в 2-3 раза.
Кроме вставок и насадок теплообмен в трубах можно интенсифицировать применением шероховатых поверхностей, накаткой упомянутых кольцевых канавок, изменением поперечного сечения трубы ее сжатием. В этом случае даже при ламинарном режиме течения теплоносителя теплоотдача в трубах на 20-100 % выше, чем в гладких трубах.
Если коэффициент теплоотдачи от среды, проходящей в трубах, на порядок ниже, чем коэффициент для наружной стороны труб, весьма выгодно использование в теплообменниках труб с внутренним оребрением. Примером является конструкция, показанная на рис. 5.4, а. При теплообмене в системе газ-газ рационально в качестве теплообменной поверхности использовать пучки труб с внешними и внутренними ребрами (рис. 5.4, б). Для обеспечения направленного потока газа между наружными ребрами труб помещены треугольные вставки.
Кроме перечисленных методов, в отечественной и зарубежной практике делают попытки интенсифицировать теплопередачу и другими способами, например использованием вращающихся турбулизаторов.
ЛЕКЦИЯ № 6 «Выпрямление воздуха» (4 часа)
6.1. Пластинчатые и спиральные теплообменники
6.2. Расчет и выбор теплообменников
6.1. ПЛАСТИНЧАТЫЕ И СПИРАЛЬНЫЕ ТЕПЛООБМЕННИКИ
Do'stlaringiz bilan baham: |