Toshloq
tumani
Sana:_____________
18-mashg‘ulot
Dars mavzusi
.
Algebraik kasrlarni qisqartirish.
Dars maqsadlari
: o‗quvchilarga algebraik kasrlarni qisqartirishni o‗rgatish,
ularning fanga qiziqishlarini oshirish.
Darsning borishi
:
1. Tashkiliy qism.
2. Algebraik kasrlarni qisqartirish.
Algebraik kasrlarni qisqartirish.
Kasrni qisqartirish uchun kasrning surat va maxrajini ularning umumiy
bo‗luvchisiga bo‗lish kerak.
1-misol:
2-misol:
3-misol:
4-misol:
3. Mustahkamlash.
Test yechiladi.
TESTLAR.
1.
ni soddalashtiring.
A)
x
B)
x
-2 С)
x
+1 D) 2
x
E)
x
-1
2.
ni soddalashtiring.
A) –2
x
B) –2
y
C) 2
y
D) 2
x
E) 2
x
-2
y
3.
ni qisqartiring.
A)
B)
C)
D)
E)
4.
kasrni qisqartiring.
A)
B)
C)
D)
E)
5.
ni qisqartiring.
A)
B)
C)
D)
E)
6.
kasrni qisqartiring.
A) [(
x
2
)
4
+1]
-1
B) [(
x
2
)
3
+1]
-1
C) [(
x
2
)
-4
+1]
-1
;
6
16
6
16
16
96
4
3
2
4
3
2
4
2
5
3
2
n
m
n
m
n
m
m
n
m
n
m
n
b
c
b
c
b
a
c
c
b
a
c
b
a
c
b
a
;
b
a
b
a
b
a
y
x
b
a
y
x
b
a
y
b
a
x
b
a
y
b
a
x
by
ay
bx
ax
by
ay
bx
ax
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
6
6
6
6
6
36
12
36
36
12
36
2
2
2
2
3
3
n
n
n
n
n
n
n
n
n
n
n
n
b
a
b
a
a
b
b
a
a
b
b
a
a
b
a
b
a
5
6
5
6
5
6
25
30
3
3
2
3
2
2
2
1
2
2
3
2
2
2
1
2
2
1
2
2
2
3
х
х
х
х
y
x
y
x
y
xy
x
y
x
2
2
2
2
3
3
1
4
3
2
2
y
y
y
1
4
y
y
1
4
y
y
1
4
y
y
1
4
y
y
1
4
y
y
2
2
2
9
3
x
y
xy
x
y
x
x
3
y
x
x
3
y
x
x
3
x
y
y
3
x
y
x
3
1
1
2
4
2
x
x
x
x
1
1
2
x
x
1
2
1
2
x
x
1
1
2
x
x
1
1
2
x
x
1
2
1
2
x
x
1
1
24
8
16
x
x
x
Toshloq tumani
D) [(
x
2
)
-3
+1]
-1
E) [(
x
3
)
-2
+1]
-1
7.
ni hisoblang.
A)
B)
C)
D)
E)
8.
ni soddalashtiring.
A) 2
x
B)
x
+1
C)
x
+2
D)
x
E)
x
-1
9.
ni soddalashtiring.
A)
x
-1
B)
x
C) 2
x
D)
x
+1
E)
x
+2
10.
ni soddalashtiring.
A)
B)
C)
D)
E)
11.
ni soddalashtiring.
A)
B)
C)
D)
E)
12.
ni soddalashtiring.
A)
B)
C)
D)
E)
4. Darsni yakunlash.
5. Uyga vazifa: test yechish tematik axborotnomalardan
Tayyorladi: _________________________
Tekshirdi: O‘TIBDO‗ : __________ _________________________
―_____‖____ 201 y.
2
2
2
2
2
2
2
2
6
,
3
4
,
6
4
,
11
12
7
,
6
7
,
16
8
,
4
2
,
5
21
8
2
50
21
21
8
1
50
7
7
1
7
2
2
3
)
1
(
2
x
x
x
x
1
1
2
2
3
x
x
x
x
2
2
2
2
6
5
6
4
2
b
ab
a
b
ab
a
b
a
b
a
2
2
b
a
b
a
2
b
a
b
a
2
2
b
a
b
a
2
2
b
a
b
a
2
2
2
2
2
3
2
9
12
4
b
ab
a
b
ab
a
b
a
b
a
2
3
b
a
a
b
2
3
b
a
b
a
3
2
b
a
b
a
3
2
b
a
b
a
2
3
3
6
3
4
:
3
3
2
2
2
2
3
x
x
x
x
x
x
2
)
1
(
x
x
x
2
)
1
(
2
x
x
x
2
)
1
(
2
x
x
x
2
)
2
(
2
x
x
x
2
)
1
(
2
x
x
x