Shuning uchun javob : a) 7.
«)-Ь b)-I; c)l; d)3; e)-L.
5-misol: Tenglamaning yechimlari ko’paytmasini toping:
l°g* 3 • log3;c 3 = \og9x 3.
— — = —-— => log. x • log. 3x = log. 9x =>
log3 x log3 3x log3 9x
=> log3 x • (log3 3 + log3 x) = log3 9 + log3 x =>
Yechish: log3 x + log2 x = log3 9 + log3 x => log2 x = log3 9 => log2 x = 2
=> log3 x = +V2 => Xj = 342 ,x2 = T^2 =>
Javob :c)l.
Xj • x2 =3^ ■ У42 =3° =1.
II.Ko’pgina logarifmik tengsizliklar quyidagi to’rtta holatdan biriga keltirib yechiladi:
1) 0 < a < 1 bo'Isa, logaf(x) > logag(x) tengsizlikni yechish uchun quyidagi sistemani
yechish kerak:
I fix) > 0
Agar a > 1, bo’lsa, loga f(x) > loga g(x) о |
Agar 0 < a < 1 bo’lsa, loga /(*) < loga g(x) о
fix) > g(x) g(x) > 0 lf(x)>g(x)
Uo) > 0
4) Agar a > l bo’lsa, loga fix) < loga g(x) <»
f(x) < g(x) f(x) > 0
2. 1) lg(x + l) < 2 =^> lg(x + l) < IglOO =^>
x + 1 < 100
x + 1 > 0
x <99
x > -1
-1 < x < 99
log2(x-3) + log2(jc-2)
Yechish: Logarifmik funktsiya argumentning musbat qiymatlarida aniqlangan, shuning uchuntengsizlikning chap qismi x-3>0 va x-2>0 dama'noga ega. Demak, bu tengsizlikning aniqlanish sohasi x>3 oraliqdir.
log2 (x - 3) + log2 (x - 2) < log2 2 =^> log2(x - 3) • (x - 2) < log2 2 =^>
f(x-3)-(x-2)<2^>l < 1 => 3 < x < 4.
[x > 3 =^> x > 3 J
log j (x2 + 2x - 8) > -4 tengsizlikni yeching.
Brinchi kvadrat tengsizlikni yechib -6 < x < 4 ga ega bo’lamiz. 2-kvadrat tengsizlikni yechib x < -4, x > 2 ga ega bo’lamiz. Ikkalasini umumlashtirib - 6 < x < -4, 2 < x < 4 javobga ega bo’lamiz.
5. Tengsizlikni yeching. log 015 (x + 5)4 > log 015 (3x -1)4
Yechish: Logarifmlarning asoslari 1 dan kichik bo’lgani uchun potensirlaganga
tengsizlik belgisi qarama-qarshisiga o’zgaradi.
04 <(3j-1)4 =^02 <(3j-1)2 =>
=^> (x + 5)2 - (3j -1)2 < 0, x Ф -5 =^>
=^> (x + 5 - 3x +1) • (x + 5 + 3x -1) < 0, л: ^ 5 =>
=^> (6 - 2x) • (4x + 4) < 0, x ^ -5 =>
=^> Xj =-l,x2 = 3,i ^ -5 => i e (—go;—1) u (3;oo)?j ф -5 =>
2>ig (-oo;-5)u(-5;-l)u(3;oo)
4x-l
Tengsizlikni yeching. 1 <
Yechish: (—) 4 = 16 bo'lgani uchun :
log j (x2 + 2x - 8) > log j 16 =>
Yechish:
л
4x-l 4x + 8
< log 1 =>
Ti
4x-l 4x + 8
> 1, x Ф -2
4x -1
4x + 8
> 0 x, = —; x, = -2
4
+
~T
0
_L
4
4x-l
4x + 8
-9
>1
4x -1
1>0
4x + 8
>0=>4x + 8<0
4x + 8
Javob : x < -2, x e (-oo;-2)
4jc -1 - 4jc - 8
4x + 8
x < -2.
>0
7! log p(———) > 0
7) Л Злг-1.5
tengsizlikni yeching.
lo > о
^ S. 2x + 9 tengsizlikni eching.
2
4
Tengsizlikni yeching. log 2 (3 - 2x) - log, (3 - 2x) > -
8 ^
a)(-go;0,5) b)(-co;l,5;) c)(-4;-l); d)(0;l); e)(-co;0).
log2(3-2jf) = log^3 (3 - 2xk3 — log j
1
Yechish:
lOgj
^-log (3-2,)>log (I,-
(3-2xf
4
1
1 (3 - 2xf ,
log! > og1
« (3-2x) -
T1
Jsy
1
1
4 < л4
1 2x -3 < 0
3 - 2x 2
3 - 2x > 2
2x <3
2x < 1 2v < 3
(3 - 2v) 2
1
x < —
2 1
=> x < —.
3 2
v < —
2
3 - 2x > 0
Javob : a) (-go; 0,5).
10) Tengsizlikni qanoatlantiradigan butun sonlar nechta?
log2(4-x)-log2 7 < 0 a) 6; b)5; c)8; d)7; e)4.
, [4-x > 0
Yechish: log2(4-.x)27^>i ^>x<4 x>-3
4>
Do'stlaringiz bilan baham: |