Toshkent 022 Topshiriq Masalaning berilishi



Download 4,68 Mb.
bet2/2
Sana09.07.2022
Hajmi4,68 Mb.
#766115
1   2
Bog'liq
AL-laboratoriya-1

N atija :
Dastur kodi :

// Trapetsiyalar usuli


#include
using namespace std;
double Function(double x) {
return sqrt((18 - x) / (x - 6));
}
int main() {
double a = 8, b = 10, x, s = 0;
int n = 100;
double h = (b - a) / n;
for (int i = 1; i < n; i++) {
if ((i + 1) % 10 == 0) {
cout << "n = " << i + 1 << "\t\t";
cout << "x = " << x << "\t";
cout << "f(x) = " << Function(x) << "\t\t";
cout << "f(x) * h = " << Function(x) * h << endl;
}
x = a + i * h;
s += Function(x);
}
double integral = (h / 2) * (Function(a) + Function(b) + 2 * s);
cout << "\nIntegral = " << integral << endl;
}
Natija :



Dastur kodi :
// Simpson usuli
#include
using namespace std;

double Function(double x) {


return sqrt((18 - x) / (x - 6));
}
int main() {
double a = 8, b = 10, x, s = 0, integral;
int n = 100;
double h = (b - a) / n;
for (int i = 1; i < n; i++) {
if ((i + 1) % 10 == 0) {
cout << "n = " << i + 1 << "\t\t";
cout << "x = " << x << "\t";
cout << "f(x) = " << Function(x) << "\t\t";
cout << "f(x) * h = " << Function(x) * h << endl;
}
x = a + i * h;
if (i % 2 == 0) {
s += 2 * Function(x);
} else {
s += 4 * Function(x);
}
}
integral = (h / 3) * (Function(a) + Function(b) + s);
cout << "\nIntegral = " << integral << endl;
}
Natija :





n

10

20

30

40

50

60

70

80

90

100

S(yuza)

To‘g‘ri to‘rtburchaklar usuli

x

8.19

8.39

8.59

8.79

8.99

9.19

9.39

9.59

9.79

9.99

3.47947

f(x)

2.12

2.00

1.90

1.81

1.74

1.66

1.59

1.53

1.47

1.42

f(x)*h

0.04

0.04

0.04

0.03

0.03

0.03

0.03

0.03

0.03

0.02

Trapetsiyalar usuli

x

8.16

8.36

8.56

8.76

8.96

9.16

9.36

9.56

9.76

9.96

3.52408

f(x)

2.13

2.02

1.92

1.83

1.75

1.67

1.60

1.54

1.48

1.42

f(x)*h

0.04

0.04

0.04

0.03

0.03

0.03

0.03

0.03

0.03

0.02

Simpson usuli

x

8.16

8.36

8.56

8.76

8.96

9.16

9.36

9.56

9.76

9.96

3.52406

f(x)

2.13

2.02

1.92

1.83

1.75

1.67

1.60

1.54

1.48

1.42

f(x)*h

0.04

0.04

0.04

0.03

0.03

0.03

0.03

0.03

0.03

0.02


Tahlil qilish va xulosa.
Aniq integralni o’zimiz hisoblaganimizda natija :


Xulosa qilib aytganda dasturimiz aniq integralni deyarli xatosiz hisoblab berdi.

Topshiriq 3
Masalaning berilishi. Berilgan algebraik va transsendent tenglamalarni yechishda oraliqni teng ikkiga bo‘lish va vatarlar usullaridan foydalanib tenglamaning taqribiy ildizini 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001 aniqliklarda hisoblansin. Olingan natijalar quyidagi jadvalga to’ldirilib tahlil qilinsin.

Masalaning algoritmi.

Dastur kodi :

// Kesmani 2 ga bo'lish
#include
using namespace std;

double Function(double x) {


return atan(x * x) - 1 - 1 / (1 + x * x);
}
int main() {
double a = 1.6, b = 1.8, c = (a + b) / 2, e = 0.001;
if (Function(a) * Function(b) > 0) {
cout << "Bu oraliqda ildizi yo'q";
return 0;
}
while ((b - a) / 2 > e) {
c = (a + b) / 2;
if (Function(a) * Function(c) <= 0)
b = c;
else a = c;
}
cout << c;
}
Natija :



Dastur kodi :

// Vatarlar
#include
using namespace std;

double Function(double x) {


return atan(x * x) - 1 - 1 / (1 + x * x);
}
int main() {
double a = 1.6, b = 1.8, e = 0.01;
float xm, x0, c;
if (Function(a) * Function(b) > 0) {
cout << "Bu oraliqda ildizi yo'q";
return 0;
}
do {
x0 = (a * Function(b) - b * Function(a)) / (Function(b) - Function(a));
c = Function(a) * Function(x0);
a = b;
b = x0;
if (c == 0) break;
xm = (a * Function(b) - b * Function(a)) / (Function(b) - Function(a));
} while (fabs(xm - x0) >= e);
cout << x0;
}
Natija :

Dastur kodi :

// Nyuton(urunma)
#include
using namespace std;

double Function(double x) {


return atan(x * x) - 1 - 1 / (1 + x * x);
}
double Function1(double x) {
double u = x * x;
return 2 * x / (1 +pow(x, 4)) + 2 * x / ((1 + u) * (1 + u));
}
int main() {
double a = 1.6, b = 1.8, e = 0.001;
double h = Function(b) / Function1(b);
if (Function(a) * Function(b) > 0) {
cout << "Bu oraliqda ildizi yo'q";
return 0;
}
while (abs(h) >= e) {
h = Function(b) / Function1(b);
b = b - h;
}
cout << b;
}
Natija :


epsilon

0.1

0.01

0.001

0.0001

0.00001

0.000001

Kesmani 2 ga bo’lish

1.7

1.7375

1.73281

1.73379

1.73375

1.73375

Vatarlar

1.73974

1.73974

1.73347

1.73375

1.73375

1.73375

Nyuton (urunma)

1.8

1.73374

1.73375

1.73375

1.73375

1.73375

Tahlil qilish va xulosa : Ikki funksiya grafigi chizilganda [1.6;1.8] oraqaliqda 1 ta yechimi bor





Xulosa qilib aytganda dasturimiz 0.000001 aniqlikda xatolikka yo’l qo’yilgan.
Download 4,68 Mb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish