Topshirdi: sheravatov sh Qabul qildi: turdiyev u


O’zgaruvchilari ajraladigan tenglamalar



Download 1,01 Mb.
bet2/3
Sana10.07.2022
Hajmi1,01 Mb.
#768352
1   2   3
Bog'liq
Differensial tenglamalar

20.O’zgaruvchilari ajraladigan tenglamalar.


O„ng tomoni ikkita funksiyaning ko„paytmasidan iborat bo„lib, ulardan biri faqat x ga bog‟liq, ikkinchisi esa faqat y ga bog‟liq bo„lsa, ya‟ni
yў=f(x)Чg(y), (1)
bunday ko„rinishdagi differensial tenglamaga o„zgaruvchilari ajraladigan tenglama deyiladi. (1) da f(x), xОX da, g(y) yОY da aniqlangan, berilgan uzluksiz funksiyadir, g(y)№0, "yОY. (1) tenglama o‟zgaruvchilari ajralgan tenglamaga keltirib yechiladi. Buni uchun (1) tenglamaning ikkala tomonini g(y)№0 ga bo„lamiz va dx ga ko„paytiramiz,

natijada o„zgaruvchilari ajralgan
dy =
g( y)
f (x)dx tenglamani hosil qilamiz. Bu tenglikni

integrallab umumiy yechimini topamiz:
dy
т g( y) = т f (x)dx + C,


C = const

Agar y=y0 da g(y0)=0 bo„lsa, (y=y0ОY), y0- (1) ni yechimlaridan biri bo„ladi, chunki (y0)ў=0 va f(x)Чg(y0)= f(x)Ч0=0, ya‟ni (1) tenglama 0є0 ayniyatga aylanadi. (1) ni y(x0)=y0
y ds x

boshlanag‟ich shartni qanoatlantiruvchi yechimi esa т g(s) = т f (t)dt
ko‟rinishda

bo„lishini ko‟rsatish qiyin emas.
y0 x0

1-misol.
dy 1 + y 2
= differensial tenglamani umumiy yechimi topilsin.
dx 1 + x 2

Yechish: g(y)=1+y2 yОR da hech qayerda nolga aylanmaydi, o„zgaruvchilarni ajratib integrallaymiz.

dy
т1 + y 2
= dx + C

т
1 + х 2 1

arctgy=arctgx+arctgC , (C1=arctgC deb oldik), oxirgi tenglikni tangenslab umumiy yechimni hosil qilamiz.
у = х + С
1 - хС

2-misol.
y' = y x
tenglamaning umumiy yechimini toping.

Yechilishi. O‟zgaruvchilarni ajratib:
dy = dx
( y № 0) , integrallab topamiz.



ln y = ln x + ln C ,


(C № 0) Ю
y x
y = Cx,

Agar
x0 = 1,
y0 = 1
yoki
y x=1 = 1shartga mos xususiy yechimni topish kerak bo‟lsa,

y=Cx umumiy yechimdan, C=1 ni topamiz. Xususiy yechim esa: y=x bo‟ladi.

Endi x=0 da y=0, ya‟ni
y x=0 = 0 shartga mos yechimni

topaylik. Umumiy yechim y=Cx dan 0 = С Ч 0 , bu tenglik C ning bitta emas, balki har qanday qiymatida o‟rinli bo‟ladi. Ya‟ni, (o,o) nuqtadan cheksiz ko‟p y=Cx to‟g‟ri chiziqlar

o‟tadi. Shu sababdan ham, (o,o) nuqta
y' = y x
differensial tenglamaning maxsus nuqtasidan

iborat. Oy o‟qda yotuvchi nuqtalar ham maxsus nuqtalardir. y=Cx umumiy yechim geometrik jihatdan koordinatalar boshidan o‟tuvchi barcha to‟g‟ri chiziqlar (Oy o‟qdan tashqari) to‟plamini beradi. Oy o‟qda yotmagan har bir nuqta orqali bu to‟plamning yagona to‟g‟ri chizig‟i o‟tadi. Koordinatalar boshi orqali cheksiz ko‟p integral egri chiziqlar o‟tadi. Shuni takidlaymizki, Oy o‟qda yotgan va koordinatalar boshi bilan ustma-ust tushmaydigan maxsus nuqtalar orqali birorta ham integral chiziq o‟tmaydi.

3-misol.
y' = - y
x
tenglamaning umumiy yechimini toping.

Yechilishi. Tenglamada o‟zgaruvchilarni ajratib, integrallaymiz:

dy = - x
Ю ydy = -xdx,
т ydy = -т xdx Ю

dx y

2

2

2
y = - x + C
2 2 2

yoki
x2 + y 2 = C 2 , bu yerda C>0 ixtiyoriy haqiqiy son
Tenglamaning umumiy yechimi markazi O(0;0) koordinata boshida joylashgan

radiusi esa R=C ga teng bo‟lgan konsentrik aylanalardan iborat (4-chizma) bo‟ladi.

Xususan, A(4;-3) nuqtadan o‟tuvchi yechimni topish uchun
x2 + y 2 = C 2 ,
umumiy

yechimdan
42 + (-3)2 = C 2 ,
C 2 = 16 + 9 = 25
C=5 ni topamiz, Demak, izlangan xususiy

yechim:
x2 + y2 = 25 bo‟ladi.

Takidlaymizki, O(0;0) nuqta orqali birorta ham aylana (integral chiziq)o‟tmaydi, bu maxsus nuqta hisoblanadi. Shu sababdan ham berilgan tenglamaning umumiy yechimi markazi teshilgan nuqta (markazi O(0;0) nuqta teshib olib tashlangan) bo‟lgan aylanalar oilasidan iborat deb tushunish lozim.



Differensial tenglamalarni yeching.

Download 1,01 Mb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish