The Project Gutenberg eBook #36640: Lectures on Elementary Mathematics



Download 0,6 Mb.
bet23/31
Sana28.11.2020
Hajmi0,6 Mb.
#52830
1   ...   19   20   21   22   23   24   25   26   ...   31
Bog'liq
Lectures on Elementary Mathematics

M + N .



x2 (a − x)2

Directions for finding the smallest and greatest values of variable quantities are given in the Differential Calculus. We shall here content ourselves with remarking that the quantity in question will be a minimum when







x = 3 M ;

a x N
.

so that we shall have



a3 M

x = 3 M + 3 N ,
from which we get, as the smallest value of the expression
M + N ,

x2 (a − x)2

the quantity (3
M +


3 N )3

a2 .

Hence there will be two real values for x if this quantity is less than A; but these values will be imaginary if it is greater. The case of equality will give two equal values for x.

I have dwelt at considerable length on the analysis of this problem, (though in itself it is of slight importance,) for the reason that it can be made to serve as a type for all analogous cases.

The equation of the foregoing problem, having been freed from fractions, will assume the following form:



Ax2(a − x)2 − M (a − x)2 − Nx2 = 0.

With its terms developed and properly arranged it will be found to be of the fourth degree, and will consequently have four roots. Now by the analysis which we have just given, we can recognise at once the character of these roots. And since a method may spring from this consideration applicable to all equations of the fourth degree, we shall make a few brief remarks upon it in passing. Let the general equation be


x4 + px2 + qx + r = 0.

We have already seen that if the last term of this equation be negative it will necessarily have two real roots, one positive and one negative; but that if the last term be positive we can in general infer nothing as to the character of its roots. If we give to this equation the following form

(x2 − a2)2 + b(x + a)2 + c(x − a)2 = 0,

a form which developed becomes

x4 + (b + c − 2a2)x2 + 2a(b − c)x + a4 + a2(b + c) = 0,

and from this by comparison derive the following equations of condition



b + c 2a2 = p, 2a(b − c) = q, a4 + a2(b + c) = r,
and from these, again, the following,

b + c = p + 2a2, b − c = q , 3a4 + pa2 = r,
2a

we shall obtain, by resolving the last equation,



2 p . r p2
= 6 +

3 + 36 .


Download 0,6 Mb.

Do'stlaringiz bilan baham:
1   ...   19   20   21   22   23   24   25   26   ...   31




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish