Coal does not take long periods of time to form. Coal forms from peat, which is highly degraded wood and plant material. Peat looks much like coffee grounds or peat moss. During the Flood, large quantities of peat were likely produced and buried as a result of pre-Flood vegetation being ripped up and destroyed.
The extensive coal beds we find throughout the world may have also been the result of pre-Flood floating forests that were destroyed and buried.29 Coal has been produced experimentally in the laboratory from wood and peat.30 Most of these experiments have used reasonable geologic conditions of temperature (212–390°F, 100–200°C) and pressure (to simulate depth of burial). These experiments have succeeded in producing coal in just weeks of time. It appears time is probably not a significant factor in coal formation. The most important factors appear to be the quality of the organic material (peat), heat, and pressure (depth of burial).
Rapid Formation of Salt Deposits
Salt deposits can form in other places and in other ways besides large salt lakes that evaporate over long periods of time (like the Great Salt Lake in Utah or the Dead Sea in Israel). Geologists have traditionally interpreted thick salt deposits as evaporites. In other words, they picture a large basin of seawater (like the Mediterranean Sea) being enclosed and sealed off from the surrounding ocean. The confined salt water evaporates, forming a thick deposit of salt on the bottom of the basin.
Conventional scientists have recognized that this model is fraught with many paradoxes and unresolved problems.31 Recently, a new theory of salt formation has been proposed that overcomes some of these difficulties.32 This theory points out that salt is not very soluble33 at high temperatures and pressures. These situations are common near deep-sea hydrothermal vents. The authors cite examples from the Red Sea and Lake Asale (Ethiopia) where these situations exist and are associated with abundant salts. Several times throughout the paper, the authors cite that rapid deposition of the salt with accompanying rapid sedimentation rates are necessary conditions for the salt to be preserved. If the salt is not rapidly covered, it will dissolve back into the seawater when the conditions change.
Rapid Coral Reef Formation34
Under certain conditions, coral reefs can grow rapidly. Modern coral reefs are often small accumulations of corals, coralline algae, and other organisms that secrete calcium carbonate (calcite, the main ingredient of limestone) exoskeletons. However, some can be massive and thick, like the Great Barrier Reef (thickness of 180 feet [55 m])35 off the coast of Australia or Eniwetok Atoll36 (thickness of 4,590 feet [1,400 m])37 in the Marshall Islands of the Pacific. Some have argued that because of the slow growth rate of corals, large reefs need tens of thousands of years to grow.38 Corals, which build coral reefs, have been reported to grow as much as 4 to 17 inches (99–432 mm) per year.39
Large coral accumulations have been found on sunken World War II ships after only several decades.40 Acropora colonies have reached 23–31 inches (60–80 cm) in diameter in just 4.5 years in some experimental rehabilitation studies.41 At the highest known growth rates, the Eniwetok Atoll (the thickest known reef at 4,590 feet [1,400 m]) would have taken about 3,240 years to rise from the ocean floor. However, coral growth rate is not equal to reef growth rate; it is usually much less. Reef growth is a balance between constructive and destructive processes and has proved particularly difficult to measure. Reefs are constructed by coral growth and sediment, which settles and becomes cemented between reef organisms.
Modern reefs are destroyed by a number of processes, including active bioeroders (parrotfish, sea urchins), chemical dissolution, boring organisms (sponges, clams, and various worms), tsunamis, and storm waves. Reef growth occurs by the addition of mass, particularly from corals. Reef volume increases as living animals and their dead remains become cemented together with sediments to form the reef. Reef growth slows or even stops as the reef reaches sea level, because the reef organisms need to be submerged in water. Hence, the growth rate of a reef is slower than that of fast-growing corals.
So how might a thick reef, like the Eniwetok Atoll, have grown from the ocean floor since the time of the Flood? The Eniwetok Atoll is not made completely of corals that have grown on top of each other. Drilling operations into the atoll have shown that a significant amount of the material (up to 70 percent of the bore hole) was “soft, fine, white chalky limestone,”36 not well-cemented reef limestone. It may be significant that this atoll, along with many of the other atolls in the western Pacific, ultimately rise from volcanic pedestals. It is known that heat coming from these volcanoes draws cold, nutrient-rich water into the cavernous atoll framework and circulates it upward, through the atoll via convection. This process is called geothermal endo-upwellling42 and helps provide nutrients to the reef organisms near sea level.
Figure 9. How geothermal endo-upwelling might explain thick “reef” accumulations since the time of the Flood. The process is explained in the text.
Here is a possible scenario of how the Eniwetok Atoll may have become so thick in the few thousand years since the Flood (figure 9). The reef began as a volcanic platform. Carbonates (limestones) began to accumulate on the platform as the result of bacteria and other organisms that can precipitate calcite, especially in volcanically warmed water. This produced much of the “soft, fine, chalky limestone” found within the reef. Carbonate-producing organisms (like corals) were brought to the platform as small larval forms, transported by ocean currents. This explains the occasional occurrence of various corals and mollusks found within the deeper parts of the drill core. The volcanic heat source allowed the carbonate mound to grow, deep below sea level, and the process of geothermal endo-upwelling to begin. The combination of nutrient supply and heat may have allowed the carbonate mound to grow much faster than observed coral reef growth rates today. As the carbonate mound approached sea level, shallow water reef corals were permanently established and thrived as a result of the upwelling process.
Do'stlaringiz bilan baham: |