The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet427/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   423   424   425   426   427   428   429   430   ...   868
(12.9.8)
35
The loss of one observation may not be very serious in large samples but can make a substantial
difference in the results in small samples. Without transforming the first observation as indicated, the
error variance will not be homoscedastic. On this, see Jeffrey Wooldridge, op. cit., p. 388. For some
Monte Carlo results on the importance of the first observation, see Russell Davidson and James G.
MacKinnon, 
Estimation and Inference in Econometrics,
Oxford University Press, New York, 1993,
Table 10.1, p. 349.
36
Maddala, op. cit., p. 232.
guj75772_ch12.qxd 14/08/2008 10:40 AM Page 443


then the original model must have a 
trend
in it and 
β
1
represents the coefficient of the trend
variable.
37
Therefore, one “accidental” benefit of introducing the intercept term in the first-
difference model is to test for the presence of a trend variable in the original model.
Returning to our wages–productivity regression (12.5.2), and given the AR(1) scheme
and a low 
d
value in relation to 
r
2
, we rerun Eq. (12.5.2) in the first-difference form with-
out the intercept term; remember that Eq. (12.5.2) is in the 
level form
. The results are as
follows:
38
Compared with the level form regression (12.5.2), we see that the slope coefficient has not
changed much, but the 
r
2
value has dropped considerably. This is generally the case
because by taking the first differences we are essentially studying the behavior of variables
around their (linear) trend values. Of course, we cannot compare the 
r
2
of Eq. (12.9.9)
directly with that of the 
r
2
of Eq. (12.5.2) because the dependent variables in the two mod-
els are different.
39
Also, notice that compared with the original regression, the 
d
value has
increased dramatically, perhaps indicating that there is little autocorrelation in the first-
difference regression.
40
Another interesting aspect of the first-difference transformation relates to the 
stationar-
ity 
properties of the underlying time series. Return to Eq. (12.2.1), which describes the
AR(1) scheme. Now if in fact 
ρ
=
1, then it is clear from Eqs. (12.2.3) and (12.2.4) that the
series 
u
t
is 
nonstationary, 
for the variances and covariances become infinite. That is why,
when we discussed this topic, we put the restriction that 
|
ρ
|
<
1. But it is clear from
Eq. (12.2.1) that if the autocorrelation coefficient is in fact 1, then Eq. (12.2.1) becomes
u
t
=
u
t

1
+
ε
t
or
(
u
t

u
t

1
)
=

u
t
=
ε
t

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   423   424   425   426   427   428   429   430   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish