The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics


(12.1.7) A regression such as Eq. (12.1.7) is known as autoregression



Download 5,05 Mb.
Pdf ko'rish
bet392/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   388   389   390   391   392   393   394   395   ...   868
(12.1.7)
A regression such as Eq. (12.1.7) is known as
autoregression
because one of the explana-
tory variables is the lagged value of the dependent variable. (We shall study such models in
Chapter 17.) The rationale for a model such as Eq. (12.1.7) is simple. Consumers do not
change their consumption habits readily for psychological, technological, or institutional
reasons. Now if we neglect the lagged term in Eq. (12.1.7), the resulting error term will
reflect a systematic pattern due to the influence of lagged consumption on current
consumption.
“Manipulation’’ of Data
In empirical analysis, the raw data are often “manipulated.’’ For example, in time series re-
gressions involving quarterly data, such data are usually derived from the monthly data
by simply adding three monthly observations and dividing the sum by 3. This averaging
introduces smoothness into the data by dampening the fluctuations in the monthly data.
Therefore, the graph plotting the quarterly data looks much smoother than the monthly
data, and this smoothness may itself lend to a systematic pattern in the disturbances,
thereby introducing autocorrelation. Another source of manipulation is 
interpolation
or
extrapolation
of data. For example, the Census of Population is conducted every 10 years
in this country, the last being in 2000 and the one before that in 1990. Now if there is a
need to obtain data for some year within the intercensus period 1990–2000, the common
practice is to interpolate on the basis of some ad hoc assumptions. All such data “massag-
ing’’ techniques might impose upon the data a systematic pattern that might not exist in
the original data.
6
Data Transformation
As an example of this, consider the following model:
Y
t
=
β
1
+
β
2
X
t
+
u
t
(12.1.8)
where, say, 
Y
=
consumption expenditure and 
X
=
income. Since Eq. (12.1.8) holds true
at every time period, it holds true also in the previous time period, (
t

1). So, we can write
Eq. (12.1.8) as
Y
t

1
=
β
1
+
β
2
X
t

1
+
u
t

1
(12.1.9)
Y
t

1

X
t

1
, and 
u
t

1
are known as the 
lagged values
of 
Y
,
X
, and 
u
, respectively, here
lagged by one period. We will see the importance of the lagged values later in the chapter
as well in several places in the text.
Now if we subtract Eq. (12.1.9) from Eq. (12.1.8), we obtain

Y
t
=
β
2

X
t
+

u
t

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   388   389   390   391   392   393   394   395   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish