The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet206/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   202   203   204   205   206   207   208   209   ...   868
Akaike’s Information crite-
rion
and 
Amemiya’s Prediction criteria,
which are used to select between competing
models. We will discuss these criteria when we consider the problem of model selection in
greater detail in a later chapter (see Chapter 13).
Comparing Two 
R
2
Values
It is crucial to note that in comparing two models on the basis of the coefficient of deter-
mination, whether adjusted or not, 
the sample size n and the dependent variable must be the
same;
the explanatory variables may take any form. Thus for the models
ln
Y
i
=
β
1
+
β
2
X
2
i
+
β
3
X
3
i
+
u
i
(7.8.6)
Y
i
=
α
1
+
α
2
X
2
i
+
α
3
X
3
i
+
u
i
(7.8.7)
the computed 
R
2
terms cannot be compared. The reason is as follows: By definition,
R
2
measures the proportion of the variation in the dependent variable accounted for by the
explanatory variable(s). Therefore, in Eq. (7.8.6) 
R
2
measures the proportion of the 
varia-
tion in 
ln
Y
explained by 
X
2
and 
X
3
, whereas in Eq. (7.8.7) it measures the proportion of the
variation in Y,
and the two are not the same thing: As noted in Chapter 6, a change in ln
Y
gives a relative or proportional change in 
Y
, whereas a change in 
Y
gives an absolute
change. Therefore, var
ˆ
Y
i
/
var
Y
i
is not equal to var (
ln
Y
i
)
/
var (ln
Y
i
); that is, the two coef-
ficients of determination are not the same.
13
How then does one compare the 
R
2
’s of two models when the regressand is not in the
same form? To answer this question, let us first consider a numerical example.
13
From the definition of 
R
2
, we know that
1

R
2
=
RSS
TSS
=
ˆ
u
2
i
(
Y
i
− ¯
Y
)
2
for the linear model and
1

R
2
=
ˆ
u
2
i
(ln
Y
i

ln
Y
)
2
for the log model. Since the denominators on the right-hand sides of these expressions are different,
we cannot compare the two 
R
2
terms directly.
As shown in Example 7.2, for the linear specification, the RSS
=
0.1491 (the residual sum of
squares of coffee consumption), and for the log–linear specification, the RSS
=
0.0226 (the residual
sum of squares of log of coffee consumption). These residuals are of different orders of magnitude
and hence are not directly comparable.
guj75772_ch07.qxd 11/08/2008 04:22 PM Page 203



Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   202   203   204   205   206   207   208   209   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish