The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet191/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   187   188   189   190   191   192   193   194   ...   868
188
188
The two-variable model studied extensively in the previous chapters is often inadequate in
practice. In our consumption–income example (Example 3.1), for instance, it was assumed
implicitly that only income
X
is related to consumption
Y
. But economic theory is seldom so
simple for, besides income, a number of other variables are also likely to affect consump-
tion expenditure. An obvious example is wealth of the consumer. As another example, the
demand for a commodity is likely to depend not only on its own price but also on the prices
of other competing or complementary goods, income of the consumer, social status, etc.
Therefore, we need to extend our simple two-variable regression model to cover models
involving more than two variables. Adding more variables leads us to the discussion of
multiple regression models, that is, models in which the dependent variable, or regressand,
Y
depends on two or more explanatory variables, or regressors.
The simplest possible multiple regression model is three-variable regression, with one
dependent variable and two explanatory variables. In this and the next chapter we shall
study this model. Throughout, we are concerned with multiple linear regression models,
that is, models linear in the parameters; they may or may not be linear in the variables.
7.1
The Three-Variable Model: Notation and Assumptions
Generalizing the two-variable population regression function (PRF) Eq. (2.4.2), we may
write the three-variable PRF as
(7.1.1)
where 
Y
is the dependent variable, 
X
2
and 
X
3
the explanatory variables (or regressors), 
u
the
stochastic disturbance term, and 
i
the 
i
th observation; in case the data are time series, the
subscript 
t
will denote the 
t
th observation.
1
Y
i
=
β
1
+
β
2
X
2
i
+
β
3
X
3
i
+
u
i
Chapter
1
For notational symmetry, Eq. (7.1.1) can also be written as
Y
i
=
β
1
X
1
i
+
β
2
X
2
i
+
β
3
X
3
i
+
u
i
with the provision that 
X
1
i
=
1 for all 
i
.
7
Multiple Regression
Analysis: The Problem
of Estimation
guj75772_ch07.qxd 11/08/2008 04:22 PM Page 188


Chapter 7
Multiple Regression Analysis: The Problem of Estimation
189
In Eq. (7.1.1) 
β
1
is the intercept term. As usual, it gives the mean or average effect on 
Y
of all the variables excluded from the model, although its mechanical interpretation is the
average value of 
Y
when 
X
2
and 
X
3
are set equal to zero. The coefficients 
β
2
and 
β
3
are
called the 

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   187   188   189   190   191   192   193   194   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish