The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics


Functional Forms of Regression Models



Download 5,05 Mb.
Pdf ko'rish
bet165/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   161   162   163   164   165   166   167   168   ...   868
6.4
Functional Forms of Regression Models
As noted in Chapter 2, this text is concerned primarily with models that are linear in the pa-
rameters; they may or may not be linear in the variables. In the sections that follow we con-
sider some commonly used regression models that may be nonlinear in the variables but are
linear in the parameters or that can be made so by suitable transformations of the variables.
In particular, we discuss the following regression models:
1. The log-linear model
2. Semilog models
3. Reciprocal models
4. The logarithmic reciprocal model
We discuss the special features of each model, when they are appropriate, and how they are
estimated. Each model is illustrated with suitable examples.
6.5
How to Measure Elasticity: The Log-Linear Model
Consider the following model, known as the
exponential regression model:
Y
i
=
β
1
X
β
2
i
e
u
i
(6.5.1)
which may be expressed alternatively as
8
(6.5.2)
where ln
=
natural log (i.e., log to the base 
e
, and where 
e
=
2
.
718)
.
9
If we write Eq. (6.5.2) as
(6.5.3)
where
α
=
ln
β
1
, this model is linear in the parameters
α
and
β
2
, linear in the logarithms of
the variables
Y
and
X
, and can be estimated by OLS regression. Because of this linearity,
such models are called
log-log, double-log,
or
log-linear
models. See Appendix 6A.3 for
the properties of logarithms.
If the assumptions of the classical linear regression model are fulfilled, the parameters
of Eq. (6.5.3) can be estimated by the OLS method by letting
Y

i
=
α
+
β
2
X

i
+
u
i
(6.5.4)
where 
Y

i
=
ln
Y
i
and
X

i
=
ln
X
i
.
The OLS estimators 
ˆ
α
and 
ˆ
β
2
obtained will be best lin-
ear unbiased estimators of 
α
and 
β
2
, respectively.
ln
Y
i
=
α
+
β
2
ln
X
i
+
u
i
ln
Y
i
=
ln
β
1
+
β
2
ln
X
i
+
u
i
8
Note these properties of the logarithms: (1) ln (
A B
)
=
ln
A
+
ln
B
, (2) ln (
A
/
B
)
=
ln
A

ln
B
, and
(3) ln (
A
k
)
=
k
ln
A
, assuming that
A
and
B
are positive, and where
k
is some constant.
9
In practice one may use common logarithms, that is, log to the base 10. The relationship between the
natural log and common log is: ln
e
X
=
2
.
3026 log
10
X
.
By convention, ln means natural logarithm, and
log means logarithm to the base 10; hence there is no need to write the subscripts 
e
and 10 explicitly.
guj75772_ch06.qxd 07/08/2008 07:00 PM Page 159


160
Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   161   162   163   164   165   166   167   168   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish