The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics


classical normal linear regression model (CNLRM)



Download 5,05 Mb.
Pdf ko'rish
bet106/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   102   103   104   105   106   107   108   109   ...   868
classical
normal linear regression model (CNLRM).
4.2
The Normality Assumption for 
u
i
The classical 
normal
linear regression model assumes that each 
u
i
is distributed 
normally
with
Mean:
E
(
u
i
)
=
0
(4.2.1)
Variance:
E
[
u
i

E
(
u
i
)]
2
=
E
u
2
i
=
σ
2
(4.2.2)
cov (
u
i

u
j
):
E
{
[(
u
i

E
(
u
i
)][
u
j

E
(
u
j
)]
} =
E
(
u
i
u
j
)
=
0
i
=
j
(4.2.3)
The assumptions given above can be more compactly stated as
u
i

N
(0,
σ
2
)
(4.2.4)
where the symbol

means
distributed as
and
N
stands for the
normal distribution,
the
terms in the parentheses representing the two parameters of the normal distribution, namely,
the mean and the variance.
As noted in 
Appendix A,
for 
two normally distributed variables, zero covariance or
correlation means independence of the two variables.
Therefore, with the normality as-
sumption, Equation 4.2.4 means that 
u
i
and 
u
j
are not only uncorrelated but are also inde-
pendently distributed.
Therefore, we can write Eq. (4.2.4) as
u
i

NID (0,
σ
2
)
(4.2.5)
where 
NID
stands for 
normally and independently distributed.
guj75772_ch04.qxd 07/08/2008 07:28 PM Page 98


Chapter 4
Classical Normal Linear Regression Model (CNLRM)
99
Why the Normality Assumption?
Why do we employ the normality assumption? There are several reasons:
1. As pointed out in Section 2.5, 
u
i
represent the combined influence (on the dependent
variable) of a large number of independent variables that are not explicitly introduced in the
regression model. As noted, we hope that the influence of these omitted or neglected
variables is small and at best random. Now by the celebrated 
central limit theorem (CLT)
of statistics (see 
Appendix A
for details), it can be shown that if there are a large number
of independent and identically distributed random variables, then, with a few exceptions,
the distribution of their sum tends to a normal distribution as the number of such variables
increases indefinitely.
1
It is the CLT that provides a theoretical justification for the assump-
tion of normality of 
u
i
.
2. A variant of the CLT states that, even if the number of variables is not very large
or if these variables are not strictly independent, their sum may still be normally
distributed.
2
3. With the normality assumption, the probability distributions of OLS estimators can be
easily derived because, as noted in

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   102   103   104   105   106   107   108   109   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish