The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet394/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   390   391   392   393   394   395   396   397   ...   868
dynamic regression
models,
that is, models involving lagged regressands. We will study such models in depth
in Chapter 17.
The point of the preceding example is that sometimes autocorrelation may be induced
as a result of transforming the original model.
Nonstationarity
We mentioned in Chapter 1 that, while dealing with time series data, we may have to find
out if a given time series is stationary. Although we will discuss the topic of nonstationary
time series more thoroughly in the chapters on time series econometrics in 
Part 5
of the
text, loosely speaking, a time series is stationary if its characteristics (e.g., mean, variance,
and covariance) are 
time invariant;
that is, they do not change over time. If that is not the
case, we have a nonstationary time series.
As we will discuss in
Part 5,
in a regression model such as Eq. (12.1.8), it is quite possible
that both
Y
and
X
are nonstationary and therefore the error
u
is also nonstationary.
7
In that
case, the error term will exhibit autocorrelation.
In summary, then, there are a variety of reasons why the error term in a regression model
may be autocorrelated. In the rest of the chapter we investigate in some detail the problems
posed by autocorrelation and what can be done about it.
It should be noted also that autocorrelation can be positive (Figure 12.3
a
) as well as
negative, although most economic time series generally exhibit positive autocorrelation
because most of them ether move upward or downward over extended time periods and do
not exhibit a constant up-and-down movement such as that shown in Figure 12.3
b
.
12.2
OLS Estimation in the Presence of Autocorrelation
What happens to the OLS estimators and their variances if we introduce autocorrelation in
the disturbances by assuming that 
E
(
u
t
u
t
+
s
)
=
0 (
s
=
0) but retain all the other assump-
tions of the classical model?
8
Note again that we are now using the subscript 
t
on the dis-
turbances to emphasize that we are dealing with time series data.
We revert once again to the two-variable regression model to explain the basic ideas
involved, namely, 
Y
t
=
β
1
+
β
2
X
t
+
u
t
. To make any headway, we must assume the mech-
anism that generates 
u
t
, for 
E
(
u
t
u
t
+
s
)
=
0 (
s
=
0) is too general an assumption to be of

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   390   391   392   393   394   395   396   397   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish