The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics


A.3 Variances and Standard Errors



Download 5,05 Mb.
Pdf ko'rish
bet102/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   98   99   100   101   102   103   104   105   ...   868
3A.3
Variances and Standard Errors 
of Least-Squares Estimators
Now by the definition of variance, we can write
var (
ˆ
β
2
)
=
E
[
ˆ
β
2

E
(
ˆ
β
2
)]
2
=
E
(
ˆ
β
2

β
2
)
2
since
E
(
ˆ
β
2
)
=
β
2
=
E
k
i
u
i
2
using Eq. (4) above
=
E
k
2
1
u
2
1
+
k
2
2
u
2
2
+ · · · +
k
2
n
u
2
n
+
2
k
1
k
2
u
1
u
2
+ · · · +
2
k
n

1
k
n
u
n

1
u
n
(6)
Since by assumption, 
E
(
u
2
i
)
=
σ
2
for each 
i
and 
E
(
u
i
u
j
)
=
0,
i
=
j
, it follows that
var (
ˆ
β
2
)
=
σ
2
k
2
i
=
σ
2
x
2
i
(using the definition of 
k
2
i
)
=
Eq. (3.3.1)
(7)
The variance of 
ˆ
β
1
can be obtained following the same line of reasoning already given. Once the
variances of 
ˆ
β
1
and 
ˆ
β
2
are obtained, their positive square roots give the corresponding standard
errors.
3A.4
Covariance between 
β
1
ˆ
and 
β
2
ˆ
By definition,
cov (
ˆ
β
1
,
ˆ
β
2
)
=
E
{
[
ˆ
β
1

E
(
ˆ
β
1
)][
ˆ
β
2

E
(
ˆ
β
2
)]
}
=
E
(
ˆ
β
1

β
1
)(
ˆ
β
2

β
2
)
(Why?)
= − ¯
X E
(
ˆ
β
2

β
2
)
2
(8)
= − ¯
X
var (
ˆ
β
2
)
=
Eq. (3.3.9)
where use is made of the fact that 
ˆ
β
1
= ¯
Y
− ˆ
β
2
¯
X
and 
E
(
ˆ
β
1
)
= ¯
Y

β
2
¯
X
, giving
ˆ
β
1

E
(
ˆ
β
1
)
= − ¯
X
(
ˆ
β
2

β
2
)
.
Note:
var (
ˆ
β
2
) is given in Eq. (3.3.1).
3A.5
The Least-Squares Estimator of 
σ
2
Recall that
Y
i
=
β
1
+
β
2
X
i
+
u
i
(9)
guj75772_ch03.qxd 23/08/2008 02:35 PM Page 93


94
Part One
Single-Equation Regression Models
Therefore,
¯
Y
=
β
1
+
β
2
¯
X
+ ¯
u
(10)
Subtracting Equation (10) from Equation (9) gives
y
i
=
β
2
x
i
+
(
u
i
− ¯
u
)
(11)
Also recall that
ˆ
u
i
=
y
i
− ˆ
β
2
x
i
(12)
Therefore, substituting Equation (11) into Equation (12) yields
ˆ
u
i
=
β
2
x
i
+
(
u
i
− ¯
u
)
− ˆ
β
2
x
i
(13)
Collecting terms, squaring, and summing on both sides, we obtain
ˆ
u
2
i
=
(
ˆ
β
2

β
2
)
2
x
2
i
+
(
u
i
− ¯
u
)
2

2(
ˆ
β
2

β
2
)
x
i
(
u
i
− ¯
u
)
(14)
Taking expectations on both sides gives
E
ˆ
u
2
i
=
x
2
i
E
(
ˆ
β
2

β
2
)
2
+
E
(
u
i
− ¯
u
)
2

2
E
(
ˆ
β
2

β
2
)
x
i
(
u
i
− ¯
u
)
=
x
2
i
var (
ˆ
β
2
)
+
(
n

1) var (
u
i
)

2
E
k
i
u
i
(
x
i
u
i
)
=
σ
2
+
(
n

1)
σ
2

2
E
k
i
x
i
u
2
i
(15)
=
σ
2
+
(
n

1)
σ
2

2
σ
2
=
(
n

2)
σ
2
where, in the last but one step, use is made of the definition of 
k
i
given in Eq. (3) and the relation
given in Eq. (4). Also note that
E
(
u
i
− ¯
u
)
2
=
E
u
2
i

n
¯
u
2
=
E
u
2
i

n
u
i
n
2
=
E
u
2
i

1
n
u
2
i
=
n
σ
2

n
n
σ
2
=
(
n

1)
σ
2
where use is made of the fact that the 
u
i
are uncorrelated and the variance of each 
u
i
is 
σ
2
.
Thus, we obtain
E
ˆ
u
2
i
=
(
n

2)
σ
2
(16)
Therefore, if we define
ˆ
σ
2
=
ˆ
u
2
i
n

2
(17)
its expected value is
E
(
ˆ
σ
2
)
=
1
n

2
E
ˆ
u
2
i
=
σ
2
using Equation (16)
(18)
which shows that 
ˆ
σ
2
is an unbiased estimator of true 
σ
2
.
guj75772_ch03.qxd 23/08/2008 02:35 PM Page 94


Chapter 3
Two-Variable Regression Model: The Problem of Estimation
95
3A.6
Minimum-Variance Property 
of Least-Squares Estimators
It was shown in Appendix 3A, Section 3A.2, that the least-squares estimator 
ˆ
β
2
is linear as well as
unbiased (this holds true of 
ˆ
β
1
too). To show that these estimators are also minimum variance in the
class of all linear unbiased estimators, consider the least-squares estimator 
ˆ
β
2
:
ˆ
β
2
=
k
i
Y
i
where
k
i
=
X
i
− ¯
X
(
X
i
− ¯
X
)
2
=
x
i
x
2
i
(see Appendix 3A
.
2)
(19)
which shows that 
ˆ
β
2
is a weighted average of the 
Y
’s, with 
k
i
serving as the weights.
Let us define an alternative linear estimator of 
β
2
as follows:
β

2
=
w
i
Y
i
(20)
where 
w
i
are also weights, not necessarily equal to 
k
i
.
Now
E
(
β

2
)
=
w
i
E
(
Y
i
)
=
w
i
(
β
1
+
β
2
X
i
)
(21)
=
β
1
w
i
+
β
2
w
i
X
i
Therefore, for 
β

2
to be unbiased, we must have
w
i
=
0
(22)
and
w
i
X
i
=
1
(23)
Also, we may write
var (
β

2
)
=
var
w
i
Y
i
=
w
2
i
var
Y
i
[
N ote:
var
Y
i
=
var
u
i
=
σ
2
]
=
σ
2
w
2
i
[
N ote:
cov (
Y
i
,
Y
j
)
=
0 (
i
=
j
)]
=
σ
2
w
i

x
i
x
2
i
+
x
i
x
2
i
2
(Note the mathematical trick)
=
σ
2
w
i

x
i
x
2
i
2
+
σ
2
x
2
i
x
2
i
2
+
2
σ
2
w
i

x
i
x
2
i
x
i
x
2
i
=
σ
2
w
i

x
i
x
2
i
2
+
σ
2
1
x
2
i
(24)
because the last term in the next to the last step drops out. (Why?)
Since the last term in Equation (24) is constant, the variance of (
β

2
) can be minimized only by
manipulating the first term. If we let
w
i
=
x
i
x
2
i
Eq. (24) reduces to
var (
β

2
)
=
σ
2
x
2
i
=
var (
ˆ
β
2
)
(25)
guj75772_ch03.qxd 23/08/2008 02:35 PM Page 95


96
Part One
Single-Equation Regression Models
In words, with weights 
w
i
=
k
i
, which are the least-squares weights, the variance of the linear esti-
mator 
β

2
is equal to the variance of the least-squares estimator 
ˆ
β
2
; otherwise var (
β

2
)
>
var (
ˆ
β
2
)
.
To
put it differently, if there is a minimum-variance linear unbiased estimator of 
β
2
, it must be the least-
squares estimator. Similarly it can be shown that 
ˆ
β
1
is a minimum-variance linear unbiased estimator
of 
β
1
.
3A.7
Consistency of Least-Squares Estimators
We have shown that, in the framework of the classical linear regression model, the least-squares esti-
mators are unbiased (and efficient) in any sample size, small or large. But sometimes, as discussed in
Appendix A,
an estimator may not satisfy one or more desirable statistical properties in small sam-
ples. But as the sample size increases indefinitely, the estimators possess several desirable statistical
properties. These properties are known as the 
large sample,
or 
asymptotic, properties.
In this ap-
pendix, we will discuss one large sample property, namely, the property of 

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   98   99   100   101   102   103   104   105   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish