MA, third edition, 1998.
CRC Press, 2004.
702
B I B L I O G R A P H Y
[SFG82]
M. Shore, L. Foulds, and P. Gibbons. An algorithm for the Steiner problem
in graphs. Networks, 12:323–333, 1982.
[SH75]
M. Shamos and D. Hoey. Closest point problems. In
Proc. Sixteenth IEEE
Symp. Foundations of Computer Science, pages 151–162, 1975.
[SH99]
W. Shih and W. Hsu. A new planarity test.
Theoretical Computer Science,
223(1–2):179–191, 1999.
[Sha87]
M. Sharir. Efficient algorithms for planning purely translational collision-
free motion in two and three dimensions. In Proc. IEEE Internat. Conf.
Robot. Autom., pages 1326–1331, 1987.
[Sha04]
M. Sharir. Algorithmic motion planning. In J. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, pages 1037–
1064. CRC Press, 2004.
[She97]
J. R. Shewchuk. Robust adaptive floating-point geometric predicates.
Disc.
Computational Geometry, 18:305–363, 1997.
[Sho05]
V. Shoup.
A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, 2005.
[Sip05]
M. Sipser. Introduction to the Theory of Computation. Course Technology,
second edition, 2005.
[SK86]
T. Saaty and P. Kainen.
The Four-Color Problem. Dover, New York, 1986.
[SK99]
D. Sankoff and J. Kruskal.
Time Warps, String Edits, and Macromolecules:
the theory and practice of sequence comparison. CSLI Publications, Stanford
University, 1999.
[SK00]
R. Skeel and J. Keiper. Elementary Numerical computing with Mathematica.
Stipes Pub Llc., 2000.
[Ski88]
S. Skiena. Encroaching lists as a measure of presortedness.
BIT, 28:775–784,
1988.
[Ski90]
S. Skiena. Implementing Discrete Mathematics. Addison-Wesley, Redwood
City, CA, 1990.
[Ski99]
S. Skiena. Who is interested in algorithms and why?: lessons from the stony
brook algorithms repository. ACM SIGACT News, pages 65–74, September
1999.
[SL07]
M. Singh and L. Lau. Approximating minimum bounded degree spanning
tree to within one of optimal. In Proc. 39th Symp. Theory Computing
(STOC), pages 661–670, 2007.
[SLL02]
J. Siek, L. Lee, and A. Lumsdaine.
The Boost Graph Library: user guide
and reference manual. Addison Wesley, Boston, 2002.
[SM73]
L. Stockmeyer and A. Meyer. Word problems requiring exponential time.
In Proc. Fifth ACM Symp. Theory of Computing, pages 1–9, 1973.
[Smi91]
D. M. Smith. A Fortran package for floating-point multiple-precision arith-
metic. ACM Trans. Math. Softw., 17(2):273–283, June 1991.
[Sno04]
J. Snoeyink. Point location. In J. Goodman and J. O’Rourke, editors,
Hand-
book of Discrete and Computational Geometry, pages 767–785. CRC Press,
2004.
B I B L I O G R A P H Y
703
[SR83]
K. Supowit and E. Reingold. The complexity of drawing trees nicely.
Acta
Do'stlaringiz bilan baham: