Informatica, 18:377–392, 1983.
[SR03]
S. Skiena and M. Revilla. Programming Challenges: The Programming Con-
test Training Manual. Springer-Verlag, 2003.
[SS71]
A. Sch¨
onhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Com-
puting, 7:281–292, 1971.
[SS02]
R. Sedgewick and M. Schidlowsky. Algorithms in Java, Parts 1-4: Fun-
damentals, Data Structures, Sorting, Searching, and Graph Algorithms.
Addison-Wesley Professional, third edition, 2002.
[SS07]
K. Schurmann and J. Stoye. An incomplex algorithm for fast suffix array
construction. Software: Practice and Experience, 37:309–329, 2007.
[ST04]
D. Spielman and S. Teng. Smoothed analysis: Why the simplex algorithm
usually takes polynomial time. J. ACM, 51:385–463, 2004.
[Sta06]
W. Stallings. Cryptography and Network Security: Principles and Practice.
Prentice Hall, fourth edition, 2006.
[Str69]
V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
14:354–356, 1969.
[SV87]
J. Stasko and J. Vitter. Pairing heaps: Experiments and analysis. Commu-
nications of the ACM, 30(3):234–249, 1987.
[SV88]
B. Schieber and U. Vishkin. On finding lowest common ancestors: simpli-
fication and parallelization. SIAM J. Comput., 17(6):1253–1262, December
1988.
[SW86a]
D. Stanton and D. White. Constructive Combinatorics. Springer-Verlag,
New York, 1986.
[SW86b]
Q. Stout and B. Warren. Tree rebalancing in optimal time and space. Comm.
ACM, 29:902–908, 1986.
[SWA03]
S. Schlieimer, D. Wilkerson, and A. Aiken. Winnowing: Local algorithms
for document fingerprinting. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of data, pages 76–85, 2003.
[Swe99]
Z. Sweedyk. A 2.5-approximation algorithm for shortest superstring. SIAM
J. Computing, 29:954–986, 1999.
[SWM95]
J. Shallit, H. Williams, and F. Moraine. Discovery of a lost factoring ma-
chine. The Mathematical Intelligencer, 17-3:41–47, Summer 1995.
[Szp03]
G. Szpiro. Kepler’s Conjecture: How Some of the Greatest Minds in History
Helped Solve One of the Oldest Math Problems in the World. Wiley, 2003.
[Tam08]
R. Tamassia. Handbook of Graph Drawing and Visualization. Chapman-Hall
/ CRC, 2008.
[Tar95]
G. Tarry. Le probl`
eme de labyrinthes. Nouvelles Ann. de Math., 14:187,
1895.
[Tar72]
R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Com-
puting, 1:146–160, 1972.
704
B I B L I O G R A P H Y
[Tar75]
R. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22:215–225, 1975.
[Tar79]
R. Tarjan. A class of algorithms which require non-linear time to maintain
disjoint sets. J. Computer and System Sciences, 18:110–127, 1979.
[Tar83]
R. Tarjan. Data Structures and Network Algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, 1983.
[TH03]
R. Tam and W. Heidrich. Shape simplification based on the medial axis
transform. In Proc. 14th IEEE Visualization (VIS-03), pages 481–488, 2003.
[THG94]
J. Thompson, D. Higgins, and T. Gibson. CLUSTAL W: improving the sen-
sitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids
Do'stlaringiz bilan baham: |