The ai revolution in scientific research


AI as an enabler of scientific discovery



Download 2,55 Mb.
Pdf ko'rish
bet4/11
Sana08.06.2022
Hajmi2,55 Mb.
#643427
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
AI-revolution-in-science

3
AI as an enabler of scientific discovery
AI technologies are now used in a variety of scientific 
research fields. For example:
• 
Using genomic data to predict protein structures: 
Understanding a protein’s shape is key to understanding 
the role it plays in the body. By predicting these shapes, 
scientists can identify proteins that play a role in 
diseases, improving diagnosis and helping develop new 
treatments. The process of determining protein structures 
is both technically difficult and labour-intensive, yielding 
approximately 100,000 known structures to date
5
. While 
advances in genetics in recent decades have provided 
rich datasets of DNA sequences, determining the shape 
of a protein from its corresponding genetic sequence – 
the protein-folding challenge – is a complex task. To help 
understand this process, researchers are developing 
machine learning approaches that can predict the three-
dimensional structure of proteins from DNA sequences. 
The AlphaFold project at DeepMind, for example, has 
created a deep neural network that predicts the distances 
between pairs of amino acids and the angles between 
their bonds, and in so doing produces a highly-accurate 
prediction of an overall protein structure
6

• 
Understanding the effects of climate change on cities 
and regions: Environmental science combines the need 
to analyse large amounts of recorded data with complex 
systems modelling (such as is required to understand 
the effects of climate change). To inform decision-making 
at a national or local level, predictions from global 
climate models need to be understood in terms of their 
consequences for cities or regions; for example, predicting 
the number of summer days where temperatures exceed 
30°C within a city in 20 years’ time
7
. Such local areas might 
have access to detailed observational data about local 
environmental conditions – from weather stations, for 
example – but it is difficult to create accurate projections 
from these alone, given the baseline changes taking place 
as a result of climate change. Machine learning can help 
bridge the gap between these two types of information. 
It can integrate the low-resolution outputs of climate 
models with detailed, but local, observational data; the 
resulting hybrid analysis would improve the climate models 
created by traditional methods of analysis, and provide 
a more detailed picture of the local impacts of climate 
change. For example, a current research project at the 
University of Cambridge
8
is seeking to understand how 
climate variability in Egypt is likely to change over coming 
decades, and the impact these changes will have on 
cotton production in the region. The resulting predictions 
can then be used to provide strategies for building climate 
resilience that will decrease the impact of climate change 
on agriculture in the region.
5. Lee, J, Freddolkino, P. and Zhang, Y. (2017) Ab initio protein structure prediction, in D.J. Rigden (ed.), From Protein Structure to Function with 
Bioinformatics, available at: https://zhanglab.ccmb.med.umich.edu/papers/2017_3.pdf 
6. DeepMind (2018) AlphaFold: Using AI for scientific discovery, available at: https://deepmind.com/blog/alphafold/ 
7. Banerjee A, Monteleoni C. 2014 Climate change: challenges for machine learning (NIPS tutorial). See https://www.microsoft.com/en-us/research/video/
tutorial-climate-change-challenges-for-machine-learning/ (accessed 22 March 2017).
8. See ongoing work at the British Antarctic Survey on machine learning techniques for climate projection.
© cosmin4000.


THE AI REVOLUTION IN SCIENTIFIC RESEARCH 
4
• 
Finding patterns in astronomical data: Research in 
astronomy generates large amounts of data and a key 
challenge is to detect interesting features or signals from 
the noise, and to assign these to the correct category 
or phenomenon. For example, the Kepler mission is 
seeking to discover Earth-sized planets orbiting other 
stars, collecting data from observations of the Orion Spur, 
and beyond, that could indicate the presence of stars or 
planets. However, not all of this data is useful; it can be 
distorted by the activity of on-board thrusters, by variations 
in stellar activity, or other systematic trends. Before the 
data can be analysed, these so-called instrumental 
artefacts need to be removed from the system. To help 
with this, researchers have developed a machine learning 
system that can identify these artefacts and remove them 
from the system, cleaning it for later analysis
9
. Machine 
learning has also been used to discover new astronomical 
phenomena , for example: finding new pulsars from 
existing data sets
10
; identifying the properties of stars
11
and 
supernovae
12
; and correctly classifying galaxies
13
.
9. Roberts S, McQuillan A, Reece S, Aigrain S. 2013 Astrophysically robust systematics removal using variational inference: application to the first month 
of Kepler data. Mon. Not. R. Astron. Soc. 435, 3639–3653. (doi:10.1093/mnras/stt1555)
10. Morello V, Barr ED, Bailes M, Flynn CM, Keane EF, van Straten W. 2014 SPINN: a straightforward machine learning solution to the pulsar candidate 
selection problem. Mon. Not. R. Astron. Soc. 443, 1651–1662. (doi: 10.1093/mnras/ stu1188)
11. Miller A 
et al
. 2015 A machine learning method to infer fundamental stellar parameters from photometric light curves. Astrophys. J. 798, 17. (doi: 
10.1088/0004-637X/798/2/122)
12. Lochner M, McEwen JD, Peiris HV, Lahav O, Winter MK. 2016 Photometric supernova classification with machine learning. Astrophys. J. Suppl. Ser. 225, 31. 
(doi: 10.3847/0067-0049/225/2/31)
13. Banerji M 
et al
. 2010 Galaxy Zoo: reproducing galaxy morphologies via machine learning. Mon. Not. R. Astron. Soc. 406, 342–353. (doi: 10.1111/j.1365-
2966.2010.16713.x)
© CHBD.


THE AI REVOLUTION IN SCIENTIFIC RESEARCH 
5
Machine learning has become a key tool for researchers 
across domains to analyse large datasets, detecting 
previously unforeseen patterns or extracting unexpected 
insights. While its potential applications in scientific 
research range broadly across disciplines, and will include 
a suite of fields not considered in detail here, some 
examples of research areas with emerging applications
of AI include:
14. Alan Turing Institute project: Antarctic seal populations, with the British Antarctic Survey
15. Alan Turing Institute project: Living with Machines, with AHRC

Download 2,55 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish