2. KO'P FAKTORLI REGRESSION TAHLIL
2.1. Korrelyatsion matritsani hisoblash.
Biz quyidagi kirish va chiqish faktorlarni hisobga olgan holda otkazilgan tajriba malumotlariga asosan, korrelyatsion regression tahlil usuludan foydalanib ushbu jarayon uchun matematik model tuzamiz va tuzilgan matematik modelni monandlikka tekshiramiz.
Jarayon uchun quyidagi faktorlar qaralayotgan bolsin.
X1 qurilmaning ishlash vaqti (s);
X2 qurilmaning quvvati (Vatt);
X3 – olxo'rini quritilshdan oldingi harorati ;
Y1 olxo'rini quritilgandan keyingi harorati ;
Laboratoriya sharoitida olingan tajriba malumotlari quyidagi 1.1 jadvalda keltirilgan.
1.1 jadval
№
|
Vaqt
|
Quvvat
|
Tem do
|
Tpos
|
№
|
Vaqt
|
Quvvat
|
Tem do
|
T pos
|
|
|
|
|
|
|
|
|
1
|
258
|
129
|
16
|
68
|
21
|
130
|
183
|
13
|
105
|
2
|
125
|
111
|
13
|
33
|
22
|
163
|
181
|
12
|
113
|
3
|
109
|
121
|
12
|
40
|
23
|
256
|
182
|
11
|
108
|
4
|
213
|
101
|
11
|
65
|
24
|
335
|
183
|
13
|
104
|
5
|
312
|
100
|
13
|
80
|
25
|
197
|
184
|
14
|
107
|
6
|
174
|
100
|
13
|
68
|
26
|
108
|
185
|
14
|
104
|
7
|
189
|
103
|
11
|
66
|
27
|
162
|
186
|
14
|
104
|
8
|
211
|
150
|
13
|
30
|
28
|
311
|
187
|
11
|
106
|
9
|
347
|
150
|
15
|
98
|
29
|
352
|
188
|
11
|
110
|
10
|
256
|
150
|
12
|
40
|
30
|
284
|
189
|
12
|
142
|
11
|
305
|
150
|
14
|
55
|
31
|
309
|
190
|
15
|
123
|
12
|
294
|
120
|
15
|
64
|
32
|
250
|
191
|
12
|
128
|
13
|
316
|
150
|
15
|
77
|
33
|
162
|
192
|
14
|
145
|
14
|
212
|
150
|
11
|
88
|
34
|
334
|
193
|
12
|
114
|
15
|
340
|
180
|
15
|
65
|
35
|
155
|
194
|
12
|
114
|
16
|
110
|
180
|
11
|
56
|
36
|
341
|
195
|
13
|
115
|
17
|
332
|
180
|
15
|
69
|
37
|
215
|
196
|
12
|
114
|
18
|
325
|
181
|
15
|
65
|
38
|
230
|
197
|
15
|
113
|
19
|
256
|
183
|
14
|
79
|
39
|
116
|
188
|
13
|
124
|
20
|
311
|
182
|
15
|
100
|
40
|
117
|
200
|
14
|
128
|
Ushbu jadvaldan foydalanib jarayon uchun matematik model tuzamiz. Faktorlarning ozaro bogliqliklarini inobatga olgan holda, koplik regressiya tenglamasini quyidagi formulaga asosan tuzamiz . Matematik modelni tuzishdan oldin kiruvchi va chiquvchi faktorlar orasidagi munosabatni korrelyatsion tahlil orqali tekshiramiz. Buning uchun biz Excel dasturidagi Analiz dannix bolimidan foydalanib korrelyatsion matritsani hosil qilamiz.
Korrelyatsion matritsaninig umumiy korinishi
2-jadval
Korrelyatsion matritsa
|
|
|
|
Y
|
X1
|
X2
|
X3
|
Y
|
1
|
|
|
|
X1
|
-0,12341
|
1
|
|
|
X2
|
0,385415
|
0,902889
|
1
|
|
X3
|
-0,57317
|
0,20946
|
-0,10297
|
1
|
|
|
|
|
|
1-rasm. Tajriba natijalarinig koorelyatsion maydoni
Hosil bolgan korrelyatsion matritsaga binoan faktorlar orasidagi bogliqliklarni korib chiqishimiz mumkun. Demak, orasidagi bogliqlik eng yuqori togri boglanishni esa eng yuqori teskari boglanishni korsatmoqda. Faktorlar orasida ning qolgan faktorlar bilan bogliqligi judayam kichik miqdorni korsatmoqda.
Kolpik regressiya tenglamasini aniqlash uchun faktorlarning ozaro munosabatlarini inobatga olgan holda quyidagi modelni quyida funksiyalar yordamida quramiz va uni tahlil qilib koramiz umuiy korinishga keltiramiz (2.1).
2.2. Regressiya tenglamasining koeffitsientlarini kichik kvadratlar usuli yordamida hisoblash.
Matematik model tuzish ikki hil usulda amalga oshiriladi birinchi teglama korinishi chiziqli ikkinchisiniki esa korsatkichli funksiya yordamida aniqlanadi (2.1). Demak, biz har ikkalla tenglamani tuzishni korib chiqamiz.
Hosil bolgan tenlamani nomalum koeffitsientlarni topish uchun kichik kvadratlar usuli yoki Excel dasturidagi mazsus bolimlaridan foydalanamiz. Yuqoridagi shartga kora olxo'rinining zararsizlantirilgandan keyingi harorati uchun matematik model (2.2) korinishga keltiramiz va nomalum koeffitsientlarni topib birinchi chiziqli funksiyani hosil qilamiz. Quyidagi jadvalga muofiq regressiya tenglamasininig koeffitsientlari mos ravishda aniqlanadi. (2.2)
b3
|
b2
|
b1
|
b0
|
-2,88301
|
0,625777
|
-0,11304
|
56,71201
|
1,585472
|
0,185804
|
0,069966
|
46,10185
|
0,449478
|
26,37325
|
#Н/Д
|
#Н/Д
|
9,797486
|
36
|
#Н/Д
|
#Н/Д
|
20443,87
|
25039,73
|
#Н/Д
|
#Н/Д
|
Chiziqli tenglama hosil qilingandan so’ng jarayon uchun ko’rsatkichli tenglama tuzib ikkalasidan jarayonga mosini ajratib olamiz. Buning uchun quyidagi matematik amalni bajaramiz. Tenlamani har ikki tomonini logorifmlab regressiya tenglamasini koeffitsientlarini aniqlaymiz (2.3).
(2.3)
N
|
|
|
|
|
ln(y)
|
ln(x1)
|
ln(x2)
|
ln(x3)
|
1
|
77
|
247
|
139
|
17
|
4,343805422
|
5,509388
|
4,934474
|
2,833213
|
2
|
45
|
253
|
139
|
17
|
3,80666249
|
5,533389
|
4,934474
|
2,833213
|
3
|
41
|
241
|
139
|
17
|
3,713572067
|
5,484797
|
4,934474
|
2,833213
|
4
|
52
|
211
|
104
|
19
|
3,951243719
|
5,351858
|
4,644391
|
2,944439
|
5
|
63
|
213
|
108
|
19
|
4,143134726
|
5,361292
|
4,682131
|
2,944439
|
6
|
58
|
178
|
108
|
19
|
4,060443011
|
5,181784
|
4,682131
|
2,944439
|
7
|
60
|
198
|
108
|
16
|
4,094344562
|
5,288267
|
4,682131
|
2,772589
|
8
|
25
|
211
|
160
|
15
|
3,218875825
|
5,351858
|
5,075174
|
2,70805
|
9
|
30
|
350
|
160
|
25
|
3,401197382
|
5,857933
|
5,075174
|
3,218876
|
10
|
89
|
260
|
160
|
12
|
4,48863637
|
5,560682
|
5,075174
|
2,484907
|
11
|
91
|
249
|
160
|
12
|
4,510859507
|
5,517453
|
5,075174
|
2,484907
|
12
|
64
|
294
|
179
|
15
|
4,158883083
|
5,68358
|
5,187386
|
2,70805
|
13
|
78
|
316
|
179
|
15
|
4,356708827
|
5,755742
|
5,187386
|
2,70805
|
14
|
68
|
260
|
179
|
11
|
4,219507705
|
5,560682
|
5,187386
|
2,397895
|
15
|
65
|
260
|
171
|
13
|
4,17438727
|
5,560682
|
5,141664
|
2,564949
|
16
|
75
|
260
|
183
|
13
|
4,317488114
|
5,560682
|
5,209486
|
2,564949
|
17
|
69
|
332
|
183
|
13
|
4,234106505
|
5,805135
|
5,209486
|
2,564949
|
18
|
56
|
325
|
183
|
17
|
4,025351691
|
5,783825
|
5,209486
|
2,833213
|
19
|
88
|
277
|
183
|
14
|
4,477336814
|
5,624018
|
5,209486
|
2,639057
|
20
|
99
|
307
|
180
|
12
|
4,59511985
|
5,726848
|
5,192957
|
2,484907
|
21
|
100
|
125
|
180
|
12
|
4,605170186
|
4,828314
|
5,192957
|
2,484907
|
22
|
121
|
166
|
181
|
13
|
4,795790546
|
5,111988
|
5,198497
|
2,564949
|
23
|
108
|
288
|
191
|
11
|
4,682131227
|
5,66296
|
5,252273
|
2,397895
|
24
|
106
|
288
|
191
|
13
|
4,663439094
|
5,66296
|
5,252273
|
2,564949
|
25
|
107
|
288
|
191
|
14
|
4,672828834
|
5,66296
|
5,252273
|
2,639057
|
26
|
125
|
288
|
191
|
14
|
4,828313737
|
5,66296
|
5,252273
|
2,639057
|
27
|
114
|
162
|
186
|
11
|
4,736198448
|
5,087596
|
5,225747
|
2,397895
|
28
|
116
|
311
|
187
|
11
|
4,753590191
|
5,739793
|
5,231109
|
2,397895
|
29
|
120
|
360
|
188
|
15
|
4,787491743
|
5,886104
|
5,236442
|
2,70805
|
30
|
146
|
284
|
189
|
13
|
4,983606622
|
5,648974
|
5,241747
|
2,564949
|
31
|
150
|
309
|
190
|
15
|
5,010635294
|
5,733341
|
5,247024
|
2,70805
|
32
|
128
|
250
|
163
|
12
|
4,852030264
|
5,521461
|
5,09375
|
2,484907
|
33
|
160
|
165
|
163
|
14
|
5,075173815
|
5,105945
|
5,09375
|
2,639057
|
34
|
118
|
334
|
163
|
12
|
4,770684624
|
5,811141
|
5,09375
|
2,484907
|
35
|
114
|
231
|
163
|
11
|
4,736198448
|
5,442418
|
5,09375
|
2,397895
|
36
|
117
|
231
|
195
|
13
|
4,762173935
|
5,442418
|
5,273
|
2,564949
|
37
|
114
|
231
|
198
|
21
|
4,736198448
|
5,442418
|
5,288267
|
3,044522
|
38
|
125
|
231
|
198
|
12
|
4,828313737
|
5,442418
|
5,288267
|
2,484907
|
39
|
129
|
113
|
198
|
15
|
4,859812404
|
4,727388
|
5,288267
|
2,70805
|
40
|
133
|
121
|
201
|
11
|
4,890349128
|
4,795791
|
5,303305
|
2,397895
|
Quyidagi amallarni bajargandan song yuqoridagi operatsiyani takrorlaymiz va korsatkichli funksiyaning koeffitsientlarini topamiz.
b3
|
b2
|
b1
|
bo'
|
b0
|
-0,78307
|
0,930262
|
-0,26263
|
3,203241
|
24,61216
|
0,326342
|
0,361566
|
0,196275
|
2,41489
|
|
0,433481
|
0,342175
|
#Н/Д
|
#Н/Д
|
|
9,181985
|
36
|
#Н/Д
|
#Н/Д
|
|
3,225187
|
4,215019
|
#Н/Д
|
#Н/Д
|
|
Quyidagi amallarni bajarish orqali biz ushbu jarayon uchun ikkinchi tenglamani hosil qildik va u quyidagicha korinishga ega
Keyingi bisqichda kop faktorli tajriba malumotlari asosida olingan tenglamalarga asosan biz tajriba natijasi va matematik model ortasidsagi bogliqliklarni aniqlashimiz mumkun boladi.
N
|
T pos y
|
|
|
|
Ychiziqli
|
Ykorsat
|
1
|
77
|
247
|
139
|
17
|
66,76318
|
62,05919
|
2
|
45
|
253
|
139
|
17
|
66,08494
|
61,66924
|
3
|
41
|
241
|
139
|
17
|
67,44141
|
62,46129
|
4
|
52
|
211
|
104
|
19
|
43,16435
|
45,26389
|
5
|
63
|
213
|
108
|
19
|
45,44138
|
46,76525
|
6
|
58
|
178
|
108
|
19
|
49,39775
|
49,02272
|
7
|
60
|
198
|
108
|
16
|
55,78601
|
54,53753
|
8
|
25
|
211
|
160
|
15
|
89,73992
|
81,31733
|
9
|
30
|
350
|
160
|
25
|
45,19737
|
47,72425
|
10
|
89
|
260
|
160
|
12
|
92,85005
|
91,67534
|
11
|
91
|
249
|
160
|
12
|
94,09348
|
92,72205
|
12
|
64
|
294
|
179
|
15
|
92,24745
|
82,73371
|
13
|
78
|
316
|
179
|
15
|
89,7606
|
81,18053
|
14
|
68
|
260
|
179
|
11
|
107,6228
|
108,9377
|
15
|
65
|
260
|
171
|
13
|
96,85059
|
91,59964
|
16
|
75
|
260
|
183
|
13
|
104,3599
|
97,56513
|
17
|
69
|
332
|
183
|
13
|
96,22111
|
91,4983
|
18
|
56
|
325
|
183
|
17
|
85,48033
|
74,57818
|
19
|
88
|
277
|
183
|
14
|
99,55524
|
90,54572
|
20
|
99
|
307
|
180
|
12
|
100,0528
|
97,92315
|
21
|
100
|
125
|
180
|
12
|
120,6259
|
123,9851
|
22
|
121
|
166
|
181
|
13
|
113,734
|
108,6505
|
23
|
108
|
288
|
191
|
11
|
111,9671
|
112,6491
|
24
|
106
|
288
|
191
|
13
|
106,201
|
98,83606
|
25
|
107
|
288
|
191
|
14
|
103,318
|
93,26369
|
26
|
125
|
288
|
191
|
14
|
103,318
|
93,26369
|
27
|
114
|
162
|
186
|
11
|
123,0811
|
127,8306
|
28
|
116
|
311
|
187
|
11
|
106,8641
|
108,2464
|
29
|
120
|
360
|
188
|
15
|
90,41888
|
82,11118
|
30
|
146
|
284
|
189
|
13
|
105,4016
|
98,23311
|
31
|
150
|
309
|
190
|
15
|
97,43542
|
86,31796
|
32
|
128
|
250
|
163
|
12
|
95,85778
|
94,23905
|
33
|
160
|
165
|
163
|
14
|
99,70006
|
93,15355
|
34
|
118
|
334
|
163
|
12
|
86,3625
|
87,33552
|
35
|
114
|
231
|
163
|
11
|
100,8885
|
103
|
36
|
117
|
231
|
195
|
13
|
115,1474
|
106,7686
|
37
|
114
|
231
|
198
|
21
|
93,9606
|
74,39046
|
38
|
125
|
231
|
198
|
12
|
119,9077
|
115,3009
|
39
|
129
|
113
|
198
|
15
|
124,5973
|
116,8153
|
40
|
133
|
121
|
201
|
11
|
137,1023
|
148,3376
|
2-rasm. Tajriba natijasi va matematik model ortasidagi boglanish grafigi
Do'stlaringiz bilan baham: |