2. УГОЛ МЕЖДУ ПРЯМЫМИ
Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.
Пусть в пространстве заданы две прямые:
Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим
.
Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов и :
Две прямые параллельны тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, т.е. l1 параллельна l2 тогда и только тогда, когда параллелен .
Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих коэффициентов равна нулю: .
Угол между прямой и плоскостью
Пусть прямая d - не перпендикулярна плоскости θ; d′− проекция прямой d на плоскость θ;Наименьший из углов между прямыми d и d′ мы назовем углом между прямой и плоскостью.Обозначим его как φ=(d,θ).Если d⊥θ , то (d,θ)=π/2
Oi→j→k→− прямоугольная система координат.Уравнение плоскости:
θ:Ax+By+Cz+D=0
Считаем, что прямая задана точкой и направляющим вектором: d[M0,p→] Вектор n→(A,B,C)⊥θ Тогда остается выяснить угол между векторами n→ и p→, обозначим его как γ=(n→,p→).
Если угол γ<π/2 , то искомый угол φ=π/2−γ .
Если угол γ>π/2 , то искомый угол φ=γ−π/2
sinφ=sin(2π−γ)=cosγ
sinφ=sin(γ−2π)=−cosγ
Условия задач, в которых приходится отыскивать угол между прямой и плоскостью, достаточно разнообразны. В зависимости от исходных данных, приходится подбирать соответствующий метод решения. Часто справиться с задачей нахождения угла между прямой и плоскостью помогают признаки равенства или подобия фигур, теорема косинусов и определения синуса, косинуса и тангенса угла. Также можно найти угол между прямой и плоскостью методом координат. Остановимся на нем подробнее.
Пусть в трехмерном пространстве введена прямоугольная система координат Oxyz , в ней задана прямая a, которая пересекает плоскость в точке M и не перпендикулярна плоскости , и требуется найти угол между прямой a и плоскостью .
Начнем с начальных данных, от которых мы будем отталкиваться при определении угла между прямой и плоскостью методом координат.
Прямой a в заданной прямоугольной системе координат Oxyz соответствуют некоторые уравнения прямой в пространстве и направляющий вектор прямой в пространстве, а плоскости - уравнение плоскости некоторого вида и нормальный вектор плоскости. Пусть - направляющий вектор прямой a, - нормальный вектор плоскости . Итак, будем считать, что нам известны координаты направляющего вектора прямой a и координаты нормального вектора плоскости (если известны уравнения прямой a и плоскости , то координаты векторов и определяются по этим уравнениям).
Осталось получить формулу, которая позволят вычислять угол между прямой и плоскостью по известным координатам направляющего вектора прямой и нормального вектора плоскости.
Отложим векторы и от точки пересечения прямой a и плоскости . В зависимости от координат векторов и возможны четыре варианта расположения этих векторов относительно заданных прямой и плоскости. Изобразим их на чертеже.
Очевидно, если угол между векторами и (обозначим его ) острый, то он дополняет искомый угол между прямой и плоскостью до прямого угла, то есть, . Если же , то .Так как косинусы равных углов равны, то последние равенства можно записать
следующим образом:
Формулы приведения приводят нас к равенствам , которые после преобразований принимают вид
То есть,
Do'stlaringiz bilan baham: |