Тема: Угол между двумя прямыми и угол между прямыми и плоскостью



Download 171,43 Kb.
bet2/3
Sana23.07.2022
Hajmi171,43 Kb.
#840409
1   2   3
Bog'liq
Угол между двумя прямыми и угол между прямыми

2. УГОЛ МЕЖДУ ПРЯМЫМИ
Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.
Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим
.
Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов и :
Две прямые параллельны тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, т.е. l1 параллельна l2 тогда и только тогда, когда параллелен .
Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих коэффициентов равна нулю: .
Угол между прямой и плоскостью
Пусть прямая d - не перпендикулярна плоскости θ; d′− проекция прямой d на плоскость θ;Наименьший из углов между прямыми d и d′ мы назовем углом между прямой и плоскостью.Обозначим его как φ=(d,θ).Если d⊥θ , то (d,θ)=π/2

Oi→j→k→− прямоугольная система координат.Уравнение плоскости:
θ:Ax+By+Cz+D=0
Считаем, что прямая задана точкой и направляющим вектором: d[M0,p→] Вектор n→(A,B,C)⊥θ Тогда остается выяснить угол между векторами n→ и p→, обозначим его как γ=(n→,p→).
Если угол γ<π/2 , то искомый угол φ=π/2−γ .
Если угол γ>π/2 , то искомый угол φ=γ−π/2
sinφ=sin(2π−γ)=cosγ
sinφ=sin(γ−2π)=−cosγ
Условия задач, в которых приходится отыскивать угол между прямой и плоскостью, достаточно разнообразны. В зависимости от исходных данных, приходится подбирать соответствующий метод решения. Часто справиться с задачей нахождения угла между прямой и плоскостью помогают признаки равенства или подобия фигур, теорема косинусов и определения синуса, косинуса и тангенса угла. Также можно найти угол между прямой и плоскостью методом координат. Остановимся на нем подробнее.
Пусть в трехмерном пространстве введена прямоугольная система координат Oxyz , в ней задана прямая a, которая пересекает плоскость в точке M и не перпендикулярна плоскости , и требуется найти угол между прямой a и плоскостью .
Начнем с начальных данных, от которых мы будем отталкиваться при определении угла между прямой и плоскостью методом координат.
Прямой a в заданной прямоугольной системе координат Oxyz соответствуют некоторые уравнения прямой в пространстве и направляющий вектор прямой в пространстве, а плоскости - уравнение плоскости некоторого вида и нормальный вектор плоскости. Пусть - направляющий вектор прямой a, - нормальный вектор плоскости . Итак, будем считать, что нам известны координаты направляющего вектора прямой a и координаты нормального вектора плоскости (если известны уравнения прямой a и плоскости , то координаты векторов и определяются по этим уравнениям).
Осталось получить формулу, которая позволят вычислять угол между прямой и плоскостью по известным координатам направляющего вектора прямой и нормального вектора плоскости.
Отложим векторы и от точки пересечения прямой a и плоскости . В зависимости от координат векторов и возможны четыре варианта расположения этих векторов относительно заданных прямой и плоскости. Изобразим их на чертеже.

Очевидно, если угол между векторами и (обозначим его ) острый, то он дополняет искомый угол между прямой и плоскостью до прямого угла, то есть, . Если же , то .Так как косинусы равных углов равны, то последние равенства можно записать
следующим образом:
Формулы приведения приводят нас к равенствам , которые после преобразований принимают вид

То есть,
Download 171,43 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish