Tekislikda va fazoda kordinatalar metodi


Fazoda to‘g‘ri burchakli koordinatalar sistemasi



Download 137,77 Kb.
bet4/5
Sana31.12.2021
Hajmi137,77 Kb.
#236339
1   2   3   4   5
Bog'liq
Sirliboyev Sanjar

Fazoda to‘g‘ri burchakli koordinatalar sistemasi

Fazoda nuqtaning o‘rnini aniqlash uchun bir-biri bilan to‘g‘ri burchak hosil qilib kesishadigan uchta H,Q,R tekisliklarni qaraymiz. Bu tekisliklarni koordinata tekisliklari deb ataladi. R,Q,R tekisliklar OX,OY,OZ to‘g‘ri chiziqlar bo‘yicha kesishadi, bu chiziqlar koordinata o‘qlari deyiladi va OX abssissa o‘qi, OY ordinati o‘qi va OZ applikatalar o‘qi deb ataladi. Bu uch o‘qning kesishgannuqtasi O koordinatalar boshi deyiladi. Koordinata tekisliklari o‘zaro kesishib fazoni sakkiz qismga (bo‘lakka) ajratadi. Bu bo‘laklar oktantlar deyiladi.

Bu keltirilgan koordinata sistemasi fazoda to‘g‘ri burchakli Dekart koordinata sistemasi deyiladi. Fazoda to‘g‘ri burchakli Dekart koordinata sistemasini qisqacha quyidagicha ta’riflash mumkin.

Ta’rif: Fazoda to‘g‘ri burchakli Dekart koordinatalar sistemasi berilgan deyiladi, agar 3ta o‘zaro perpendikulyar uq, ularni kesishgan nuqtasi O va masshtab birligi berilgan bo‘lsa. Fazoda har qanday nuqtaning o‘rni koordinata sistemasiga nisbatan 3ta son bilan aniqlanadi. Fazoda biror M nuqta va ma’lum masshtab birligi berilgan bo‘lsin (ch-4). M nuqtadan koordinata o‘qlariga perpendikulyarlar tushiramiz va ularni koordinata o‘qlari bilan kesishgan nuqtalarini

R,Q,S bilan belgilaymiz. Agar

Z R,Q,S nuqtalar berilgan bo‘lsa

S V M nuqtani topish mumkin. De-

mak M nuqtani fazodagi vaziya-

tini X=OR, Y=OQ va Z=OS


о
S M miqdorlar belgilaydi va ular

U M nuqtaning koordinatlari,

Q aniqrog‘i x M nuqtaning

abssissasi, U ordinatasi va

R A Z aplekatasi deyladi. Agar

X fazoda biror, M (x;u;z) nuqta

berilgan bo‘lsa, uni fazodagi vaziyatini quyidagicha aniqlash mumkin

(ch-5) OX o‘qidan x ni topamiz, OY o‘qidan uni topamiz. R nuqtadan OY o‘qiga parallel qilib, Q nuqtadan OX o‘qiga parallel qilib to‘g‘ri chiziqlar o‘tkazamiz va ularni kesishgan nuqtasini Q1 bilan belgilaymiz. O1 nuqtadan OZ o‘qiga parallel qilib uzuq chiziq o‘tkazamiz.

SHundan keyin z ni ishorasiga qarab, agar z > 0, bo‘lsa O1dan yuqoriga qarab

Z uzunliga z bo‘lgan O1Z va Z < 0 bo‘lsa

O1 dan pastga qarab uzunligi O1Z



. Z kesmi ajratamiz. O1Z kesmani oxirgi

Q y nuqtasi biz izlayotgan M nuqtadir.

O M (5;6;3) nuqtani yasaylik: xq5 va uq6

x x kesmalarni topib, ularni oxiridan

R O1 OX va OY o‘qiga parallel qilib uzuq

x y chiziqlar o‘tkazamiz, so‘ngri ularni

r-5 kesishish nuqtasi O1dan OZ o‘qiga parallel qilib uzuq chiziqlar o‘tkazamiz. Z=3>0, bo‘lganidi. O1 nuqtadan yuqorigi qarab 3 birlik o‘lchaymiz, shu kesmani oxiri, ya’ni O1M kesma hosil bo‘ladi. Ana shu topilgan M nuqta biz izlayotgan nuqtadir

Takidlaymizki, M1 (x;u) nuqta tekislikda,

M2 (x;u;z) nuqta fazoda berilgan bo‘lsa.

M1ni qaysi chorakda, M2 esa qaysi aktantda

ekanligini quyidagi j-1 va j-2 jadvaldan

foydalanib aniqlash mumkin.

uqR M Q u

o

x=5 x=5


x O1

у=6 ch-6


Октантлар х;у;z) нуқта коор иш

Х У Z


I х>0 y>0 z>0

II x<0 y>0 z>0

III x<0 y<0 z>0

IV x>0 y<0 z>0

V х>0 y>0 z<0

VI x<0 y>0 z<0

VII x<0 y<0 z<0

VIII x>0 y<0 z<0 z



Чораклар (х;у) нукта коор иш

Х у


I х>0 y>0

II x<0 y>0

III x<0 y<0

IV x>0 y<0











Download 137,77 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish