Sum of one prime and two squares of primes in short intervals



Download 309,71 Kb.
Pdf ko'rish
bet2/3
Sana08.02.2022
Hajmi309,71 Kb.
#437972
1   2   3
Bog'liq
Jnt2015


§4
in
Linnik
 
[13]
,
we
have
that
S

(
α
) =
Γ(1
/
)
z
1
/

1

ρ
z

ρ/
Γ
ρ


ζ

ζ
(0)

1
2
πi
(


3
/
2)
ζ

ζ
(
w
)Γ(
w
)
z

w
d
w.
(5)
Now
we
estimate
the
integral
in
 
(5)
.
Writing
w
=


3
/
2
+
it
,
we
have
|
(
ζ


)(
w
)
|


log(
|
t
|
+ 2),
z

w
=
|
z
|

3
/
2
exp(
t
arg(
z
)),
where
|
arg(
z
)
|

π/
2.
Furthermore
the
Stirling
formula
implies
that
Γ(
w
)
 |
t
|

(

3+1)
/
2
exp(

π
|
t
|
/
2).
Hence
(


3
/
2)
ζ

ζ
(
w
)Γ(
w
)
z

w
d
w


|
z
|

3
/
2
1
0
log(
t
+ 2) d
t
+
|
z
|

3
/
2

1
log(
t
+ 2)
t

(

3+1)
/
2
exp
(arg(
z
)

π
2
)
t
d
t


|
z
|

3
/
2
+
|
z
|

3
/
2

1
log(
t
+ 2)
t

(

3+1)
/
2
d
t


|
z
|

3
/
2
.
This
is


1 as
stated
since
z

1 by
 
(2)
.
Hence
the
lemma
is
proved.
2


A. Languasco, A. Zaccagnini / Journal of Number Theory 159 (2016) 45–58
49
We
explicitly
remark
that
 
Lemma 2
is
stronger
than
the
corresponding
Lemma
1
of
[9]
(or
Lemma
1
of
[7]
)
because
in
this
case
α
is
bounded.
The
second
lemma
is
an
L
2
-estimate
of
the
remainder
term
in
 
(4)
which
generalizes
a
result
of
Languasco
and
Perelli
[5]
;
we
will
follow
their
proof
inserting
many
details
since
the
presence
of

changes
the
shape
of
the
involved
estimates
at
several
places.
In
fact
we
will
use
 
Lemma 3
just
for

= 1
,
2 but
we
take
this
occasion
to
describe
the
more
general
case
since
it
may
be
useful
for
future
works.
Lemma
3.
Assume
RH.
Let


1
be
an
integer
and
N
be
a
sufficiently
large
integer.
For
0

ξ

1
/
2
,
we
have
ξ

ξ
S

(
α
)

Γ(1
/
)
z
1
/
2
d
α


N
1
/
ξL
2
.
Proof.
Since
z

ρ/
=
|
z
|

ρ/
exp

i
(
ρ/
)
arctan 2
πN α
,
by
RH
and
Stirling’s
formula
we
have
that
1

ρ
z

ρ/
Γ
ρ



ρ
|
z
|

1
/
(2

)
|
γ
|
(1


)
/
(2

)
exp
γ

arctan 2
πN α

π
2

|
γ
|
.
If
γα

0 or
|
α
|

1
/N
we
get
ρ
z

ρ/
Γ(
ρ/
)


N
1
/
(2

)
,
where,
in
the
first
case,
ρ
runs
over
the
zeros
with
γα

0.
Hence
I
(
N, ξ, 
) :=
ξ

ξ
S

(
α
)

Γ(1
/
)
z
1
/
2
d
α


N
1
/
ξ
(6)
if
0

ξ

1
/N
,
and
I
(
N, ξ, 
)


ξ
1
/N
γ>
0
z

ρ/
Γ
ρ

2
d
α
+

1
/N

ξ
γ<
0
z

ρ/
Γ
ρ

2
d
α
+
N
1
/
ξ
(7)
if
ξ >
1
/N
.
We
will
treat
only
the
first
integral
on
the
right
hand
side
of
 
(7)
,
the
second
being
completely
similar.
Clearly
ξ
1
/N
γ>
0
z

ρ/
Γ
ρ

2
d
α
=
K
k
=1
2
η
η
γ>
0
z

ρ/
Γ
ρ

2
d
α
+
O
(1)
(8)
where
η
=
η
k
=
ξ/
2
k
,
1
/N

η

ξ/
2 and
K
is
a
suitable
integer
satisfying
K
=
O
(
L
).
Writing
arctan 2
πN α
=
π/
2

arctan(1
/
2
πN α
) and
using
the
Saffari–Vaughan
technique
we
have


50
A. Languasco, A. Zaccagnini / Journal of Number Theory 159 (2016) 45–58
2
η
η
γ>
0
z

ρ/
Γ
ρ

2
d
α

2
1
2
δη
δη/
2
γ>
0
z

ρ/
Γ
ρ

2
d
α
d
δ
=
γ
1
>
0
γ
2
>
0
Γ
ρ
1

Γ
ρ
2

e
π
2

(
γ
1
+
γ
2
)
·
J,
(9)
say,
where
J
=
J
(
N, η, γ
1
, γ
2
) =
2
1
2
δη
δη/
2
f
1
(
α
)
f
2
(
α
) d
α
d
δ,
w
=
1

+
i

(
γ
1

γ
2
)
,
f
1
(
α
) =
|
z
|

w
and
f
2
(
α
) = exp

γ
1
+
γ
2

arctan
1
2
πN α
.
Now
we
proceed
to
the
estimation
of
J
.
Integrating
twice
by
parts
and
denoting
by
F
1
a
primitive
of
f
1
and
by
G
1
a
primitive
of
F
1
,
we
get
J
=
1
2
η
G
1
(4
η
)
f
2
(4
η
)

G
1
(2
η
)
f
2
(2
η
)

2
η
G
1
(
η
)
f
2
(
η
)

G
1
η
2
f
2
η
2

2
2
1
G
1
(2
δη
)
f

2
(2
δη
)d
δ
+ 2
2
1
G
1
δη
2
f

2
δη
2
d
δ
+
2
1
2
δη
δη/
2
G
1
(
α
)
f

2
(
α
) d
α
d
δ.
(10)
If
α >
1
/N
we
have
f

2
(
α
)


1
α
γ
1
+
γ
2
N α
f
2
(
α
)
f

2
(
α
)


1
α
2
γ
1
+
γ
2
N α
+
γ
1
+
γ
2
N α
2
f
2
(
α
)
,
hence
from
we
get
J


1
η
max
α

[
η/
2
,
4
η
]
|
G
1
(
α
)
|
1 +
γ
1
+
γ
2
N η
2
exp

c
γ
1
+
γ
2
N η
,
(11)
where
c
=
c
(

)
>
0 is
a
suitable
constant.
In
order
to
estimate
G
1
(
α
) we
use
the
substitution
u
=
u
(
α
) =
1
N
2
+ 4
π
2
α
2
1
/
2
,
(12)
thus
getting
F
1
(
α
) =
1
2
π
u
1

w
(
u
2

N

2
)
1
/
2
d
u.


A. Languasco, A. Zaccagnini / Journal of Number Theory 159 (2016) 45–58
51
By
partial
integration
we
have
F
1
(
α
) =
1
2
π
(2

w
)
u
2

w
(
u
2

N

2
)
1
/
2
+
u
3

w
(
u
2

N

2
)
3
/
2
d
u
.
(13)
From
 
(12)
and
 
(13)
we
get
G
1
(
α
) =
1
2
π
(2

w
)
A
(
α
) +
B
(
α
) d
α
,
(14)
where
A
(
α
) =
1
2
π
u
3

w
u
2

N

2
d
u
and
B
(
α
) =
u
3

w
(
u
2

N

2
)
3
/
2
d
u.
Again
by
Download 309,71 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish