1. Нуклеотидные последовательности в геноме эукариот
В конце 60-х годов работами американских ученых Р. Бриттена, Э. Дэвидсона и других была открыта фундаментальная особенность молекулярной структуры генома эукариот – нуклеотидные последовательности разной степени повторяемости. Это открытие было сделано с помощью молекулярно-биологического метода изучения кинетики ренатурации денатурированной ДНК. Различают следующие фракции в геноме эукариот.
Уникальные, т.е. последовательности, представленные в одном экземпляре или немногими копиями. Как правило, это цистроны – структурные гены, кодирующие белки.
Низкочастотные повторы – последовательности, повторяющиеся десятки раз.
Промежуточные, или среднечастотные, повторы – последовательности, повторяющиеся сотни и тысячи раз. К ним относятся гены рРНК (у человека 200 на гаплоидный набор, у мыши – 100, у кошки – 1000, у рыб и цветковых растений – тысячи), тРНК, гены рибосомных белков и белков-гистонов.
Высокочастотные повторы, число которых достигает 10 миллионов (на геном). Это короткие (~ 10 пн) некодирующие последовательности, которые входят в состав прицентромерного гетерохроматина.
ДНК мышей на 70% состоит из уникальных последовательностей, на 20% – из низкочастотных и среднечастотных повторов, на 10% – из высокочастотных.
Повторы образуют так называемые семейства, под которыми понимают совокупность последовательностей, полностью или по большей части гомологичных друг другу.
Нередко из-за существенных различий в нуклеотидном составе высокочастотных повторов и остальной ДНК первые образуют при центрифугировании в градиенте плотности хлористого цезия так называемые сателлитные пики, которые имеют большую или меньшую плавучую плотность, чем остальная ДНК. Эта фракция генома представлена небольшим (10…15) числом семейств коротких (5…12 п.н.) повторов, образующих протяженные блоки. Внутри блоков группы повторов отдельных семейств могут чередоваться друг с другом, так что сателлитная ДНК имеет как бы лоскутную структуру. Гибридизация фракций высокочастотных последовательностей с ДНК непосредственно на препаратах хромосом позволила установить, что эта фракция генома локализована в районах конститутивного гетерохроматина, чаще всего прицентромерного или теломерного. Еще в 30-х годах было показано, что в генетическом отношении эти районы инертны, т. е. не содержат генов. В действительности столь малые последовательности, составляющие сателлитную ДНК, не могут кодировать ничего, кроме олигопептидов. Более того, гетерохроматические районы не транскрибируются. Таким образом, в случае высокочастотных последовательностей ДНК обнаруживается тождество молекулярной организации и генетических свойств хромосомной ДНК эукариот. Следует отметить, что эта фракция у огромного большинства видов занимает не более 10% генома. Близкие виды, например мышь и крыса, имеют совершенно различные высокочастотные последовательности, у крысы их нуклеотидный состав не отличается от основной ДНК, тогда как геном мыши содержит четкий АТ-богатый сателлит. Это означает, что высокочастотная ДНК способна к быстрым изменениям в ходе видообразования.
Остальные 90 % генома эукариот, его эухроматическая часть, построены по принципу чередования (интерсперсии) уникальных и повторяющихся последовательностей. Условно выделяют два основных типа интерсперсии, получивших названия по тем видам, у которых они впервые были описаны: интерсперсия типа «ксенопус» (обнаружена у шпорцевой лягушки Xenopus laevis) и типа «дрозофила» (впервые описана у плодовой мушки D. melanogaster). Примерно в 50 % генома Xenopus laevis уникальные последовательности из 800…1200 п.н. чередуются с повторяющимися, средний размер которых 300 п.н. В остальной части геномов типа «ксенопус» расстояния между соседними повторами значительно превышают 1…2 п.н. Структура генома типа «ксенопус» широко распространена, особенно среди животных. Млекопитающие и человек также относятся к этому типу организации генома. Особенность генома человека и других приматов составляют интерсперсные высокочастотные повторы длиной около 300 п.н. У человека эти повторы содержат сайт, разрезаемый ферментом рестрикции Alu I. Число Alu-подобных повторов в геноме человека достигает 5×105, а по некоторым данным, даже 106.
Alu-подобные последовательности приматов представляют собой частичные дупликации (удвоения) последовательности В1 в геноме грызунов, впервые описанной Г. П. Георгиевым и его сотрудниками.
У D. melanogaster параметры интерсперсии резко отличаются от видов с типом генома «ксенопус»: повторяющиеся последовательности длиной 5600 п.н. чередуются с уникальными, длина которых не менее 13000 п.н. Интересно отметить, что у домашней мухи геном устроен по типу «ксенопус». Этот факт прямо указывает на то, что в ходе эволюции возможны очень быстрые преобразования характера чередования последовательностей и в эухроматической части генома. Птицы по параметрам интерсперсии занимают промежуточное положение между типом «ксенопус» и типом «дрозофила». Как показывают результаты исследований последних лет, многие виды животных и растений по организации генома не могут быть строго отнесены ни к тому, ни к другому типу. Так, в геномах млекопитающих встречаются длинные повторы – в несколько тысяч пар нуклеотидов, в геномах лилейных до 90% ДНК может быть представлено повторяющимися последовательностями. Например, геном гороха не содержит уникальных последовательностей, превышающих по длине 300 п.н.
Другая особенность повторяющихся последовательностей в геномах эукариот – инвертированные повторы, или палиндромы (см. ниже). В условиях ренатурации они практически мгновенно формируют дуплексные структуры. По существу, палиндромы представляют собой часть промежуточных повторов. Однако некоторые высокочастотные повторы в эухроматической части генома, например члены Alu-семейств, могут встречаться как в прямом, так и в инвертированном положении. Иногда между инвертированными повторами вклиниваются другие последовательности.
Do'stlaringiz bilan baham: |