Steganografiya quyidagi sohalarda qo'llaniladi, lekin ular bilan cheklanmaydi


test_watermark_sklearn(X, y, base_model)



Download 45,83 Kb.
bet32/40
Sana14.04.2022
Hajmi45,83 Kb.
#551350
1   ...   28   29   30   31   32   33   34   35   ...   40
Bog'liq
sregono

test_watermark_sklearn(X, y, base_model)

# Ridge Classifier
print('\n\nRidgeClassifier\n')
base_model = RidgeClassifier(alpha=.5)
test_watermark_sklearn(X, y, base_model)

# Logistic Regression
print('\n\nLogistic Regression\n')
base_model = LogisticRegression()
test_watermark_sklearn(X, y, base_model)


import string
import random
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import RidgeClassifier, LogisticRegression
from sklearn.svm import SVC
import pandas as pd
from utils import test_watermark_sklearn
from sklearn.metrics import accuracy_score

from mlmodelwatermarking.verification import verify
from sklearn.model_selection import train_test_split
from warnings import simplefilter
from math import floor
import numpy as np

from mlmodelwatermarking.marklearn import Trainer
from mlmodelwatermarking import TrainingWMArgs

simplefilter(action='ignore', category=UserWarning)


def default_key(length: int):
elements = string.ascii_uppercase + string.digits
return ''.join(random.choices(elements, k=length))


if __name__ == '__main__':
# Loading classification data
df = pd.read_csv('./data/malware_detection.csv')
X = df.drop(["Label"], axis=1)
y = df['Label'].replace('malicious', 0)\
.replace('non-malicious', 1).values

# Random Forest Classifier
print('RANDOM FOREST CLASSIFIER\n')
base_model = RandomForestClassifier(max_depth=1000, random_state=42)

X_train, X_test, y_train, y_test = train_test_split(X,

Download 45,83 Kb.

Do'stlaringiz bilan baham:
1   ...   28   29   30   31   32   33   34   35   ...   40




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish