412.
|
1
|
9a2 - 6a +1;
|
|
3)
|
36b2 + l2b + l;
|
|
2
|
l + 2c + c2;
|
|
4)
|
81-18x + x2.
|
413.
|
1
|
9x2 + 24*+ 16;
|
|
3)
|
36m2 +I2mn + n2]
|
|
2
|
100-60а + 9я2;
|
|
4)
|
a2 + \0ab + 25b2.
|
414.
|
1
|
л:4 +2x'y + у2;
|
|
3)
|
4cA +\2c2b3 + 9b6;
|
|
2
|
PA -2p2g + g2;
|
|
4)
|
25ab + 30a3 b +9b2.
|
1) а4-8а2 + 16; 3) 25а4-10а2Ь + Ь2; 2) 64 -1862 +81; 4) 16-8а2Ь2+а4Ь4.
1) -а1-2а-\\ 3) -2а2 +8ab-8b2;
2) -9 + 6Ъ-Ъ2\ 4) -12а6-3а2-1262.
Ifodaning son qiymatini toping:
5/и2-10/яи + 5л2, bunda/и = 142, и = 42;
6/и2 + 12/ии + 6и2, bunda т = 56, л = 44;
-36а3 + 4а26 - - ab2, bunda а = 4, b = 48;
?
-64а3 -Sa2b--ab2, bunda а = -6, 6 = 64.
Tenglamani yeching:
л:2 -36 = 0; 3) 4x2 + 4x + l = 0;
--x2 =0; 4) 25-10x + x2 =0.
4
Hisoblang:
1012 — 202 - 81 + 812; 3)
48 -18 852 -172
37 +126-37 + 63 ; 4)
852 +2-85 17 + 172 '
Tushirib qoldirilgan shunday uchhadni topingki, tenglik bajarilsin:
x3+/=(x+j>) (...); 3) x3-/ = (x->>) (...);
(x + y)3 =(x + j>) (...); 4) (x-y)3 =(x-j>) (...).
Ko‘paytuvchilarga ajrating:
x3-/; 3) x3 +27; 5) и3-64; 7)1-/;
c3+rf3; 4) a3-27; 6) a3 + l; 8) 125-63. Ko‘paytuvchilarga ajrating (422—424):
i) 27/и3-8; 2) 64-125/; 3) 125 + i-63; 4) 64/+—.
27 121
1) 8а3+1; З)^а3+б4б6;
2) 1 + 2763; Л)\аь+ \25b\
О
1) a9-b3; 2) a°-6b; 3) х6-729; 4) 64-/.
Ifodani qiaqa ko' paytirish formulalai idan foydalanib, ikkihad shaklida yozing (425—426):
1) (г+ 5) (r- 5^ + 25); 3) (2x + 3j>) (4x2-6xy+9/);
(у + 2) (у2 - 2у + 4); 4) (4c - 5rf) (16c2 + 20cd + 25d2).
1) (юя2 - l)(l00fl4 + \0a2 +1);
[arb2 - 5a) (a464 + 5a3b2 + 25a2);
3> U/”‘H25W + J™ + "
(I 1 Vl 2 1 1 2 4> +6V+9y
Ko'paytuvchilarga ajrating:
(8a3 -21b3)-2a (4a2 - 962); 3) (a3+b3)+(a + bf\
(64a3 +12563) + 56 (l6a2 -2562); 4) [a3-b3)+(a-bf.
Hisoblang:
2583 - 1473 17,982 - 17,98 • 32,02 + 32,022
2582 + 258 • 147 +1472 * 17,983 + 32,023
Ifodaning qiymatini toping:
(x + 2) (л2 -2x + 4)-x(x-3) (x + 3), bunda x = 2;
(2x-l) (4x2 + 2x + l)-4x(2x2 -3), bunda x = 0,5;
(4x + l) (I6x2 -4x + l)-16x(4x2 -5), bundax = -;
x(x + 2) (x-2)-(x-3) (x2 +3x+9j, bunda x = -.
122
Tenglamani yeching:
(x + 2) (x2-2x + 4)-x(x-3) (x + 3) = 26;
(x-3) (x2 +3x + 9)-x(x + 4) (x-4) = 21;
(2x-l) (4x2 +2x + l)-4x(2x2 -3) = 23;
(4x + l) (16x2 -4x + l)-16x(4x2 — 5) = 17. Ko‘paytuvchilarga ajrating (431—434):
1) 33-3; 2) /-у; 3) nfn-mn3; 4) 2a3-2ab2.
1) xAy2-x2y*\ 3) 8-72x6j>2;
2) 7c2d2 -63c2b2; 4) 2>2ab-2a2b.
1) 2a2 +4ab + 2b2; 4) Sp2 -I6p + S‘,
2m2 +2n2-4mn; 5) 21a2b2-18a6 + 3;
5x2+10xy + 5j>2; 6) 12т5и + 24/я4л + 12т3и.
1) 2c3 + 2d3\ 3) 2cd3-l6c4; 5) 7x2-56xV;
2) 54x3-16; 4) ^a2-a5; 6) 4о26+32а56.
Hisoblang: 19,12 - 8,32 + 28-8,6.
Ko‘paytuvchilarga ajrating (436—438):
1) (x2+l)2-4x2; 3) 4y2-(y-cf\
2) (x2+2x)2-1; 4) 81-(j>2+6j>)2.
i) (a2 +2ab+b2)-c2; 3) l-a2-2ab-b2\
1 - (x2 - 2xy + y2); 4) 4 + (-x2 - 2xy - y2).
438.1)a2-b2+a + b\ 3)x-j-x2+/; 5) m5-m3 +m2-1
)a2-b2-a-b\ 4)x3+x2-x-l; 6)x4+x3+x + l.
27—142 soni 13 ga bo‘linishini isbotlang.
n istalgan butun son bo‘lganda (7лг—2)2—(2л?—7)2 ifodaning qiymati 5 ga bo‘linishini; 9 ga bo'linishini isbot qiling.
Tenglamani yeching:
(x-3) (x2 + 3x + 9)-(3x-17) = x3 -12;
5x-(4-2x + x2) (x + 2) + x(x-l) (x + l) = 0.
Motorli qayiqning oqim bo'yicha tezligi 18 km/soat, oqimga qarshi tezligi esa 14 km/soat. Daryo oqimining tezligini va qayiqning turg‘un suvdagi tezligini toping.
0‘zingizni tekshirib ko'ring!
1* Ifodani standart ko'phad ko‘rinishida tasvirlang:
(a - 3)2 + (a - 3 )(a + 3) + 6 a.
2* Ko‘paytuvchilarga ajrating:
xy-2y\ 2) 16л2 — 81; 3)3х2-6хэ;
x2-10x + 25; 5) 3(x-l)+j(x-l); 6)22-4ab + 2b2.
Ko'phadni ko'paytuvchilarga ajrating va uning a = 1, 6 = -- bo'lgandagi son qiymatini toping:
a1 -3ab+3a-9b.
Do'stlaringiz bilan baham: |