SELECTED TOPICS IN DIFFERENTIAL AND INTEGRAL EQUATIONS
ASSIGNMENT 1
Please be divided group into 4 and solve problems following the Table 1
4- GROUP
|
Group
|
|
Number 4.
|
1
|
АЛИБЕКОВ ИЛЁС САЛОХИДДИНОВИЧ
|
Exs 9
|
Q8
|
2
|
БОЛБЕКОВ САЙФИДДИН НАСРИДДИН ЎҒЛИ
|
Exe 2
|
Q3
|
3
|
ДАВРОНОВА ГУЛХАЙЁ ИСЛОМ ҚИЗИ
|
Exe 8
|
Q4, Q5
|
4
|
АБДУВОХИДОВА(ЖУМАНОВА) МАВЛУДА ҒАЙБУЛЛА ҚИЗИ
|
Exs 3,
Exe 11
|
Q1,
Q2
|
5
|
КЕНЖАЕВА САНОБАР ИБРАГИМОВНА
|
Exe 5
|
Q3
|
6
|
МАМАТКУЛОВ АБДУМАЛИК УРАЛОВИЧ
|
Exe 6
|
Q1
|
7
|
РАВШАНОВ ЗОЙИР САЙФУЛЛАЕВИЧ
|
Exe7
|
Q3
|
8
|
САМАТОВ БАРҲАЁТ АНОРБОЙ ЎҒЛИ
|
Exe 8
|
Q4
|
9
|
ТОЖИБОЕВА ДИЛАФРЎЗ НУРИДДИН ҚИЗИ
|
Exe 1
|
Q1
|
10
|
ЎРОҚОВА ЮЛДУЗ СОБИР ҚИЗИ
|
Exe 10
|
Q2
|
11
|
ХОЛМАНОВА КЛАРА ЯНГИБОЙ ҚИЗИ
|
Exe 4
|
Q4
|
12
|
ЭСИРГАПОВ ИЛЁСЖОН БОБОҚАНТ ЎҒЛИ
|
Exe 9
|
Q1
|
|
|
|
|
Exercises 1: Classify each of the following integral equations as Fredholm or Volterra integral
equation, linear or nonlinear, and homogeneous or nonhomogeneous:
1. u(x)=1+
Volterra integral equation
nonliner
F(x)=1 – nonhomogeneous
Exercises 2: Classify the following integro-differential equations as Fredholm integrodifferential equation or Volterra integro-differential equation. Also determine whether the
equation is linear or nonlinear:
Exercise 2: Q3
u (x)=
u(0)=1, u′(0)=0
Volterra integro-differential equation
nonlinear
F(x)= – nonhomogeneous
Exercises 3: Convert given differential equation to a corresponding integral equation or
integro-differential equation.
Exercise 3: Q1
u′(x)= u(0)=1
Volterra integral equation
Exercises 4: Verify that the given function is a solution of the corresponding integral or
integro-differential equation:
Question 2 Solution:
Exercise 5: Convert each of the Volterra integral equations to an equivalent initial value
problem.
Q3:
Exercises 6: Derive an equivalent Volterra integral equation to each of the following initial
value problems of first and second order.
Exercises 7: Derive the equivalent Fredholm integral equation for each of the following
boundary value problems:
Exercises 8: Solve the following Fredholm integral equations by using the Adomian
decomposition method.
Question 4 Solution:
…… …… …….. ………
)
Answer:
Question 5:
Solution:
,
Answer:
Exercises 9: Solve the given Fredholm integral equations by using the modified
decomposition method
Exercises 10: Solve the following Fredholm integral equations by using the variational
iteration method
Question 2:
Exercises 11: Solve the following Fredholm integral equations by using the direct
computation method:
Do'stlaringiz bilan baham: |