Savol va javoblar qiyinlik darajasi


Daraxt qanday nomlanadi, agar uning chiqish darajasi ikkidan oshmasa



Download 183.6 Kb.
bet8/14
Sana08.01.2020
Hajmi183.6 Kb.
1   ...   4   5   6   7   8   9   10   11   ...   14

Daraxt qanday nomlanadi, agar uning chiqish darajasi ikkidan oshmasa.

1










A

Binar













B

Ternar













C

Tetradli













D

Ko’pqatlamli















Qidiruv daraxtda nechta va qaysilar ko’ruv amallarini ifodalaydi

2










A

Uchta (to’g’ri, teskari, simmetrik)













B

Ikkita (eniga va tubiga)













C

Ikkita (eniga va uzunasiga)













D

Uchta (to’g’ri, teskari, akslanuvchi)















Kompyuter xotirasida binar daraxtni qanday ko’rinishda tasvirlash qulay

2










A

bog’langan chiziqsiz ro’yxatlar













B

massivlar













C

jadvallar













D

bog’langan chiziqli ro’yxatlar















Daraxt uzunligi – bu ...

2










A

tugunlar soni













B

daraxt bosqichlari soni













C

oraliq elementlari soni













D

barglar soni















Chiziqsiz iyerarxik bog’langan ma’lumotlar tuzilmasi – bu …

2










A

Daraxt













B

Graf













C

Lug’at













D

Ro’yxat















Daraxt tugunlar ketma-ketligini tartiblangan holda chiqarish

2










A

Ko’ruv amali













B

Daraxt uzunligi













C

Daraxt balandligi













D

Daraxt kengligi















Agar daraxtni tashkil etuvchi element (tugun)lardan faqat ikkita tugun bilan bog’langan bo’lsa, u holda bunday binar daraxt ... deyiladi.

2










A

to’liq













B

Ikkilik













C

minimal balandlikka ega daraxt













D

muvozanatlangan















56,34,60,23,40,65 sonlaridan xosil bo’lgan binar daraxt muvozanatlanganmi yoki yo’qmi?

3










A

xa













B

yo’q













C

Xar ikkalasi xam bo’lishi mumkin













D

O’rtacha muvozanatlangan















Agar elementlar soni 100ta bo’lsa, u holda minimal balandga ega daraxt balandligi nechiga teng bo’ladi?

3










A

7













B

8













C

9













D

10















Agar minimal balandga ega daraxt balandligi 10ga teng bo’lsa, u holda maksimal elementlar soni nechiga teng bo’ladi

3










A

1023













B

1024













C

2047













D

2048















Agar elementlar soni 10ta bo’lsa, u holda minimal balandga ega daraxt balandligi nechiga teng bo’ladi?

3










A

4













B

1













C

3













D

2















10,7, 12, 2, 5, 3, 11, 14 sonlaridan hosil qilingan binar daraxtda nechta oraliq tugun mavjud

3










A

4













B

2













C

5













D

8















10,7, 12, 2, 5, 3, 11, 14 sonlaridan hosil qilingan binar daraxtda nechta barg mavjud

3










A

3













B

2













C

5













D

8















10,7, 12, 2, 5, 3, 11, 14 sonlaridan hosil qilingan binar daraxt balandligi nechaga teng

3










A

5













B

3













C

4













D

8















35, 27, 5,78, 29, 43 sonlaridan hosil qilingan binar daraxtda nechta barg mavjud

3










A

3













B

4













C

5













D

6















35, 27, 5,78, 29, 43sonlaridan hosil qilingan binar daraxtda nechta oraliq tugun mavjud

3










A

2













B

3













C

4













D

6















Download 183.6 Kb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   ...   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
o’rta maxsus
davlat pedagogika
axborot texnologiyalari
nomidagi toshkent
pedagogika instituti
texnologiyalari universiteti
navoiy nomidagi
samarqand davlat
guruh talabasi
ta’limi vazirligi
nomidagi samarqand
toshkent axborot
toshkent davlat
haqida tushuncha
Darsning maqsadi
xorazmiy nomidagi
Toshkent davlat
vazirligi toshkent
tashkil etish
Alisher navoiy
Ўзбекистон республикаси
rivojlantirish vazirligi
matematika fakulteti
pedagogika universiteti
таълим вазирлиги
sinflar uchun
Nizomiy nomidagi
tibbiyot akademiyasi
maxsus ta'lim
ta'lim vazirligi
махсус таълим
bilan ishlash
o’rta ta’lim
fanlar fakulteti
Referat mavzu
Navoiy davlat
umumiy o’rta
haqida umumiy
Buxoro davlat
fanining predmeti
fizika matematika
universiteti fizika
malakasini oshirish
kommunikatsiyalarini rivojlantirish
davlat sharqshunoslik
jizzax davlat