volmiri a. (Wol’mir, A. ) 1. Shells on the flow fluid and gas. Problems of Hydro-elasticity, Moscow, 1981, (Russian)
ianenko n.n. (Ianenko, N.N.) 1. Fractional steps method of solving for multi-dimensional problems of mathematical physics. Novosibirsk, Nauka (1967)
iegeri v., mikeliki a. (Jäger, W., Mikelic, A. ) 1. On the Boundary Conditions at the Contact Interface Between a Porous Medium and a Free Fluid. IWR, University of Heidelberg, Preprint 98-58, Heidelberg, 1994
ienseni s. (Jensen S.) 1. Adaptive dimensional reduction and divergence stability, Math. Model. 8 (1996), 9, 44-52.
leveki r.J. (LeVeque, R.J.) 1. Balancing source term and flux gradients in high resolution Godunov methods: The quasi-steady state wave propagation algorithm, J. Comput. Phys. 146 (1998) 346–365.
marCuki g. (Marchuk G.) 1. Split methods. Nauka, Moscow, (1988)
maxoveri e.v. (Makhover, E.V. ) 1. Bending of a plate of variable thickness with a cusped edge. Scientific Notes of Leningrad State Ped. Institute, 17, 2(1957), 28-39. (Russian)
mixlini s.g. (Mikhlin, S.G. ) 1. Variational Methods in Mathematical Physics. Nauka, Moscow, 1970. (Russian)
meunargia T. (Meunargia, T.) 1. On nonlinear and nonshallow shells. Bulletin of TICMI, (1998), 46-49. (for the electronic version: http://www.viam.hepi.edu.ge/others/TICMI)
pertami b., simeoni c. (Perthame, B., Simeoni C.) 1. A kinetic scheme for the Saint–Venant system with a source term, ENS preprint 01-13, 2001.
pismani d., reCfordi h. (Peaceman, D. and Rachford, H.) 1. The numerical solution of parabolic and elliptic differential equations. SIAM 3 (1955) 2841
samarski a. (Samarskii, A.) 1. On an economical difference method for the solution of a multi-dimensional parabolic equation in an arbitrary region. SSSR Comput. Math. Math. Phys. 2 (1962) 787-811
sanCes-palensia e. (Sanchez-Palensia, E.) 1. Non-homogeneous media and vibration theory. Moscow, Mir 1984, (Russian)
temami r. (Temam, R.) 1. Sur la stabilite et la convergence de la methode des pas fractionnaires. Ann. Mat. Pura Appl. 4 (1968) 191-379
fogeliusi m., babuSka i. (Vogelius, M., Babuška, I.) 1-3. On a dimensional reduction method, I. The optimal selection of basis functions; II. Some approximation-theoretic results; III. A posteriori error estimation and an adaptive approach, Math. of Comput. 37 (1981), 155, 31-46; 37 (1981), 155, 47-68; 37 (1981), 156, 361-384.
Svabi k. (Schwab, C.) 1. A-posteriori modeling error estimation for hierarchic Plate Models. Numerische Mathematik, 74(1996), 221-259
CinCalaZe n. (Chinchaladze, N. ) 1. Bending of an isotropic cusped elastic plates under action of an incompressible fluid. Reports of Seminar of . I. Vekua Institute of Applied Mathematics of Tbilisi State University, vol. 28 (2002), pp.31-39
2. Cylindrical vibration of an elastic cusped plate under action of an incompressible fluid in case of N=0 approximation of I.Vekua's hierarchical models. Complex Variables. Vol. 50, No. 7-11, 2005 (with R. Gilbert)
3. Vibration of the plate with two cusped edges. Proceedings of I.Vekua Institute of Applied Mathematics of Tbilisi State University, vol. 52 (2002),30-48
CinCalaZe n., jaiani g. (Chinchaladze, N., Jaiani, G. ) 1. On a cusped elastic solid-fluid interaction problem. Applied Mathematics and Informatics, vol. 6, No.2 (2001), 25-64
2. On a cylindrical bending of a plate with two cusped edges under action of an ideal fluid. Bull. TICMI, vol. 2 (1998), 30-34 for the electronic version see: http://www.viam.hepi.edu.ge/others/ticmi
3. On Big Deflections of Cusped Plates, Bull.TICMI, Vol. 9, 6-13, 2005 for the electronic version see: http://www.viam.hepi.edu.ge/others/ticmi
xvolesi a.r. (Khvoles, A.R. ) 1. The general representation for solutions of equilibrium equations of prismatic shell with variable thickness. Seminar of the Institute of Applied Mathematics of Tbilisi State University, Annot. of Reports, 5(1971), 19-21. (Russian)
xoma i. (Khoma, I. ) 1. The Generalized Theory of Anisotropic Shells. Naukova Dumka, Kiev 1986. (Russian)
jaiani g. (Jaiani, G. ) 1. On a physical interpretation of Fichera’s function, Acad. Naz. dei Lincei, Rend. della Sc. Fis. Mat. e Nat., S. 8, 68, fasc.5(1980), 426-435.
2. Solution of Some Problems for a Degenerate Elliptic Equation of Higher Order and Their Applications to Prismatic Shells. Tbilisi University Press, 1982. (Russian)
3. Theory of Cusped Euler-Bernoulli Beams and Kirchoff-Love Plates, Lecture Notes of TICMI, Vol.3, 2002 (for the electronic version see: http://www.viam.hepi.edu.ge/others/ticmi)
4. Elastic Bodies with Non-smooth Boundaries – Cusped Plates and Shells, ZAAM-Zeitschrift fuer Angewandte Mathematik und Mechanik, Vol.76, Supplement 2, pp.117-120, 1996
5. On a mathematical model of bars with variable rectangular cross-sections, ZAMMZeitschrift fuer Angewandte Mathematik und Mechanik, Vol.81, 3 (2001), 147-173
6. Relation of Hierarchical Models of Cusped Elastic Plates and Beams to the Three-dimensional Models, Reports of the Seminar of I.Vekua Institute of Applied Mathematics, Vol. 28, 40-51, 2002
jaiani g., xaribegaSvili s., natroSvili d., vendlandi v.l. (Jaiani G., Kharibegashvili S., Natroshvili D., Wendland W.L.) 1. Two-dimensional Hierarchical Models for Prismatic Shells with Thickness Vanishing at the Boundary, Journal of Elasticity, Vol. 77, No. 2, pp. 95-122
2. mosalodneli Sedegebi da maTi gamoyeneba
kvleva ganekuTvneba fundamentur kvlevaTa kategorias. agebuli da gamokvleuli iqneba Txeli drekadi da Txevadi fenebisagan Semdgari sxeulebis erTiani ierarqiuli modelebi, rac garkveuli azriT erTian sistemaSi moiyvans da gadafaravs aseTi tipis obieqtebisaTvis aqamde Catarebul gamokvlevebs. myari da Txevadi nawilebisagan Semdgari sxeulebisaTvis erTiani ierarqiuli modelebis ageba iqneba swored axali xedva. cvalebadi geometriis, maT Soris wamaxvilebuli, mravalfenovani drekadi da Txevadi nawilebis ganxilva mogvcems sanapiro zolis midamoSi mimdinare procesebis ramdenadme realurTan miaxloebul maTematikuri aRwerisa da misi simulirebis saSualebas. kompiuteruli eqsperimentebi momavalSi saSualebas mogvcems SemuSavebul iqnas rekomendaciebi sanapiro zolis dacvis TvalsazrisiT.
2.1. mdgradi ganviTarebisaken gadasvlis gegma.
Seiqmneba programuli produqti, romelic sanapiro zolis midamoSi myar da Txevad garemoTa urTierTqmedebis Sedegad gamowveuli procesebis kompiuteruli simulirebis saSualebas mogvcems, ramac momavalSi SeiZleba dRis wesrigidan moxsnas am mimarTulebiT realuri ZviradRirebuli eqsperimentebis Catareba. aseTi produqtis potenciuri momxmarebeli SeiZleba iyos nebismieri organizacia, romelic zrunavs sanapiro zolis dacvaze. dainteresebuli organizaciebis arsebobis SemTxvevaSi, proeqtis Sedegebze dayrdnobiT, iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universitetis i. vekuas saxelobis gamoeyenebiTi maTematikis instituti (Tsu gmi) SesZlebs dakveTis saxiT Seasrulos damatebiTi samecniero-kvleviTi samuSaoebi da gasces saTanado rekomendaciebi, rac xels Seuwyobs damkveTi organizaciis winaSe mdgari praqtikuli saxis problemebis gadaWras.
miRebuli mecnieruli Sedegebi inglisur enaze anonsirebuli an srulad gamoqveynebuli iqneba Tsu gmi-s bazaze gamomaval saerTaSoriso JurnalebSi Applied Mathematics, Informatics and Mechanics (ISSN 1512-0074), Bulletin of TICMI (ISSN 1512-0082), Lecture Notes of TICMI (ISSN 1512-0511), institutis SromebSi (ISSN 1512-004X), seminaris moxsenebebSi (ISSN 1512-0058), da seminaris gafarToebuli sxdomebis moxsenebebSi (ISSN 1512-0066), romlebic gacvlis wesiT igzavneba msoflios umniSvnelovanes biblioTekebSi da samecniero centrebSi. garda amisa nawili Sedegebisa gaigzavneba sxva saerTaSoriso JurnalebSi gamosaqveyneblad. proeqtis dasrulebis Semdeg ki momzaddeba monografia miRebuli da gamoqveynebuli Sedegebis gadamuSavebis safuZvelze.
programuli produqti registrirebuli iqneba saTanado fondSi.
3. saqmianobis aRwera kvartalurad
yovelkvireul seminarze mosmenili iqneba monawileTa informacia maT mier gaweul samuSaos Taobaze an samecniero moxseneba.
Tsu i. vekuas saxelobis gamoyenebiTi maTematikis institutis saitze gaixsneba proeqtis veb-gverdi operatiuli informaciiT proeqtze muSaobis Taobaze, kerZod, anonsirebuli iqneba seminaris moxsenebebis Temebi.
I kvartali
amocana 1
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
drekadi da Txevadi nawilebisagan Semdgari garemos wrfivi ierarqiuli modelebi
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
agebuli iqneba ierarqiuli modelebi variaciuli modgomis gamoyenebiT.
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari
|
amocana 2
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
drekadi da Txevadi nawilebisagan Semdgari garemos arawrfivi ierarqiuli modelebi sawyisi miaxloebebisaTvis
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
proeqciuli meTodebiT agebul iqneba ierarqiuli arawrfivi modelebis N=0,1,2 miaxloebebi, rodesac piriT zedapirebze cnobilia Zabvis veqtoris komponentebi
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari
|
amocana 3
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
deformadi myari da Txevadi nawilebisagan Semdgari garemos ierarqiuli modelebis gantolebebis ricxviTi amoxsnis algoriTmebis ageba da gamokvleva
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
a) ganxiluli iqneba deformadi myari da Txevadi nawilebisagan Semdgari garemos ierarqiuli modelebisaTvis N=0,1 miaxloeba (dinamika). Sesabamisi gantolebebisaTvis ganxiluli iqneba naxevraddiskretuli sqemebi, romlebic miiReba droiTi cvladis mixedviT warmoebulebis diskretizaciiT da sivrciTi cvladebis mixedviT warmoebulebis gasaSualoebiT. gamokvleuli iqneba am sqemebis mdgradoba.
b) marCxi wylis gantolebebisaTvis agebuli iqneba maRali sizustis mqone sasrul moculobaTa wonasworuli tipis sqemebi. gamoyvanili iqneba sqemis zogierTi Tviseba.
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari
|
II kvartali
amocana 1
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
drekadi da Txevadi nawilebisagan Semdgari garemos wrfivi ierarqiuli modelebi
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
agebuli ierarqiuli modelebisaTvis gamokvleuli iqneba variaciuli formulirebiT dasmuli amocanis amonaxsnis arsebobis da erTaderTobis da Sesabamisi samganzomilebiani amocanis zusti amonaxsnisaken miswrafebis sakiTxi, roca garemos mier dakavebuli samganzomilebiani are lipSicuria da mis mTel sazRvarze gadaadgilebebia mocemuli, xolo interfeisze mocemulia gadaadgilebis veqtorisa da Zabvis tenzoris uwyvetad gadasvlis pirobebi.
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari
|
amocana 2
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
drekadi da Txevadi nawilebisagan Semdgari garemos arawrfivi ierarqiuli modelebi sawyisi miaxloebebisaTvis
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
agebul iqneba ierarqiuli arawrfivi modelebis N=0,1,2 miaxloebebi, rodesac piriT zedapirebis erT nawilze cnobilia gadaadgilebis veqtoris komponentebi, xolo meoreze - Zabvis veqtoris komponentebi (gverdiT zedapirze sasazRvro pirobebi klasikuria). gamyof zedapirze (interfeisze) mocemulia uwyvetad gadabmis pirobebi.
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari
|
amocana 3
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
deformadi myari da Txevadi nawilebisagan Semdgari garemos ierarqiuli modelebis gantolebebis ricxviTi amoxsnis algoriTmebis ageba da gamokvleva
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
a) wina etapze agebuli sqemebisaTvis miRebuli iqneba aprioruli Sefasebebi, saidanac gamomdinareobs miaxloebiTi amonaxsnis krebadoba zusti amonaxsnisaken saTanado klasebSi. b) damtkicebuli iqneba sasrul moculobaTa wonasworuli sqemis krebadoba modelur SemTxvevaSi.
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari, publikacia
|
III kvartali
amocana 1
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
drekadi da Txevadi nawilebisagan Semdgari garemos wrfivi ierarqiuli modelebi
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
agebuli ierarqiuli modelebisaTvis gamokvleuli iqneba variaciuli formulirebiT dasmuli amocanis amonaxsnis arsebobis da erTaderTobis da Sesabamisi samganzomilebiani amocanis zusti amonaxsnisaken miswrafebis sakiTxi, roca garemos mier dakavebuli samganzomilebiani are lipSicuria, mis piriT zedapirebze Zabvebi, xolo gverdiT zedapirze gadaadgilebebia mocemuli. interfeisze mocemulia gadaadgilebis veqtorisa da Zabvis tenzoris uwyvetad gadasvlis pirobebi.
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari, publikacia
|
amocana 2
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
drekadi da Txevadi nawilebisagan Semdgari garemos arawrfivi ierarqiuli modelebi sawyisi miaxloebebisaTvis
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
Seswavlil iqneba N=0,1 miaxloebebisa da fizikur hipotezebze dayrdnobiT agebul modelebs Soris mimarTebis sakiTxi.
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari, publikacia
|
amocana 3
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
deformadi myari da Txevadi nawilebisagan Semdgari garemos ierarqiuli modelebis gantolebebis ricxviTi amoxsnis algoriTmebis ageba da gamokvleva
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
a) deformadi myari da Txevadi nawilebisagan Semdgari garemos rxevis ierarqiuli modelebis (miaxloeba N=0, 1) Sesabamisi gantolebebisaTvis sawyis-sasazRvro amocana miiyvaneba evoluciur amocanaze, romlisTvisac eqsponencialuri gaxleCis safuZvelze agebuli iqneba maRali rigis sizustis dekompoziciis sqemebi. b) Sedgenili iqneba programa damuSavebuli wonasworuli tipis sasrul moculobaTa sqemis safuZvelze. Catardeba testuri amocanebis gaTvlebi da Tvlis Sedegebis analizi.
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari
|
IV kvartali
amocana 1
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
drekadi da Txevadi nawilebisagan Semdgari garemos wrfivi ierarqiuli modelebi
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
agebuli iqneba diferencialuri ierarqiuli modelebi. N=0,1 miaxloebebSi gamokveuli iqneba drekadi myari da Txevad garemoTa harmoniuli rxevebi, maSinac, roca garemos mier dakavebuli samganzomilebiani are ara lipSicuria.
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari, publikacia, sademonstracio dRe
|
amocana 2
amocanis dasaxeleba
|
monawile organizaciebi
|
miRebuli/mosalodneli Sedegebi
|
drekadi da Txevadi nawilebisagan Semdgari garemos arawrfivi ierarqiuli modelebi sawyisi miaxloebebisaTvis
|
iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti (i. vekuas saxelobis gamoyenebiTi maTematikis instituti)
|
N=0 miaxloebisaTvis dasmuli sawyis-sasazRvro amocanis amoxsnis meTodebis damuSaveba.
|
angariSgebis masalebis nusxa (dasaxuli amocanis Sesrulebis amsaxveli masala)
|
angariSi, seminari, publikacia, sademonstracio dRe
|
Do'stlaringiz bilan baham: |