Самостоятельная работа по предмету "математический анализ " тема: Вычисление несобственных интегралов Абдуллаев Қ. У проверил (а): Джизак 2022


Если подынтегральной функции не существует в точке



Download 165,46 Kb.
bet6/6
Sana13.07.2022
Hajmi165,46 Kb.
#790327
TuriСамостоятельная работа
1   2   3   4   5   6
Bog'liq
Вичесление Абдуллаев Қобилбек 912-20

Если подынтегральной функции не существует в точке 
Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:

Здесь всё абсолютно так же, за исключением того, что предел у нас стремится к значению  слева. По оси  мы должны бесконечно близко приблизиться к точке разрыва слева.
Пример 9
Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечный разрыв в точке  (устно проверяем, что с другим пределом интегрирования всё нормально!).
Для разнообразия я решу этот интеграл сразу – методом подведения функции под знак дифференциала. Те, кому трудно, могут сначала найти неопределенный интеграл по уже рассмотренной схеме.

Добавка  обозначает, что предел у нас левосторонний, и к точке  мы приближаемся по оси  слева.
Разбираемся, почему дробь  (это лучше делать устно или на черновике).
Подставляем под корень предельное значение  :
и тогда
Окончательно:

Несобственный интеграл расходится.
Будьте очень внимательны в знаках. Да, конечно, несобственный интеграл расходится, но  и  – это разные вещи, разные жанры, и если Вы недосмотрите за знаками, то, строго говоря, допустите серьезную ошибку.
И заключительные два примера для самостоятельного рассмотрения:
Пример 10
Вычислить несобственный интеграл или установить его расходимость.

Пример 11
Вычислить несобственный интеграл или установить его расходимость.

Разбор ситуации, когда оба предела интегрирования «плохие», или точка разрыва содержится прямо на отрезке интегрирования, можно найти в статье Эффективные методы решения несобственных интегралов.
Желаю успехов!
Решения и ответы:
Пример 4: Решение:
 
Подынтегральная функция непрерывна на  .

Пример 5: Решение:

Подынтегральная функция непрерывна на  .

Несобственный интеграл расходится.
Пример 7: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке 
Download 165,46 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish