x = Ф(x) bog‘lanish orqali quyidagi iteratsion formulalarni qurishimiz mumkin:
x
n 1
n
1
15
1
y 2
4
15 zn
1
13 0;
15
11
y
n 1
x2
n
15
15 zn 15 ;
z 1 y 2 22 .
n 1
25 n 25
Bu hisoblashlarni
xn1 xn
10 5
shart bajarilgunga qadar davom ettirsak,
quyidagi jadval natijalariga kelamiz:
n
|
xn
|
yn
|
zn
|
xn1 xn
|
0
|
1.000000000
|
0.800000000
|
0.900000000
|
|
1
|
1.064000000
|
0.726666667
|
0.905600000
|
0.07333
|
2
|
1.072957037
|
0.718233600
|
0.901121778
|
0.00896
|
3
|
1.072575174
|
0.716658998
|
0.900634380
|
9.010-5
|
4
|
1.072595827
|
0.716681125
|
0.900544005
|
2.610-5
|
5
|
1.072569612
|
0.716672146
|
0.900545273
|
8.210-5
|
6
|
1.072570809
|
0.716675980
|
0.900544759
|
3.810-6
|
7
|
1.072570305
|
0.716675775
|
0.900544978
|
5.010-7
|
Bu yerda topilgan x7 yechim yetarlicha aniqlikda. Bunda yaqinlashish tezligini quyidagicha baholash o‘rinli:
x7 x
x1 x0
1 q 0.07333 1 0.9 0.351 , chunki
x7 x
7.6 10 .
2) Zeydel usuli. Iteratsion jarayonni x0 = (1.0, 0.8, 0.9)T boshlang‘ich yaqinlash- ish bilan quyidagi formulalarda amalga oshiramiz (hisob natijalari quyidagi jadvalda keltirilgan):
153
x
n1
1
15
y2 4 z
n
15 n
13 0;
15
y
n1
1
1
15
2
x
n1
15 n
11 ;
15
zn1 25
2
y
n1
22 .
25
n
|
xn
|
yn
|
zn
|
xn1 xn
|
0
|
1.000000000
|
0.800000000
|
0.900000000
|
|
1
|
1.064000000
|
0.717860267
|
0.900612934
|
0.08214
|
2
|
1.072475225
|
0.716693988
|
0.900546011
|
0.00848
|
3
|
1.072568918
|
0.716676128
|
0.900544987
|
9,410-5
|
4
|
1.072570352
|
0.716675855
|
0.900544971
|
1,410-6
|
5
|
1.072570374
|
0.716675851
|
0.900544971
|
2,210-8
|
Bu yerda topilgan x5 yechim yetarlicha aniqlikda. Bu yerda ham
* q5
0.95
* 10
x5 x
x1 x0
1 q 0.08214 1 0.9 0.486 , chunki
x5 x
10 .
Demak, ushbu misolni yechishda Zeydel usulining yaqinlashish tezligi yuqo- riroq ekan. Ammo bu ijobiy hol ba’zi nochiziqli tenglamalar sistemasini Zeydel usuli bilan yechishda kuzatilmasligi mumkin.
3) Nyuton usuli. Berilgan sistema uchun ushbu
F( x) F( x, y, z) ( f1( x, y, z), f2 ( x, y, z), f3 ( x, y, z))
15 x y2 4 z 13 0; x2 15 y z 11 0; y2 25 z 22 0 T .
belgilashlarni yuqorida qabul qilgan edik, bu yerda
f1( x, y, z) 15 x y2 4 z 13 0,
f2
f
3
(x, y, z) x2 15y z 11 0, (x, y, z) y2 25z 22 0.
Boshlang‘ich yaqinlashishni x0 = (1.0, 0.8, 0,9) T deb olib, yechimni 10 -5 aniq- likda topamiz.
Usul qoidalariga ko‘ra J( x) – Yakob matritsasini quyidagicha yozamiz:
15 2 y J (x, y, z) 2x 15
0 2 y
4
1 .
25
Ushbu x0 = (1.0, 0.8, 0,9) T boshlang‘ich yaqinlashish uchun
F( x0 ) (0.96, 1.1, 0.14) T
154
va
15
J ( x0 ) 2
0
1.6
15
1.6
4
1 .
25
Endi
J (x0 )u0 F(x0 ) tenglamaning yechimi quyidagicha:
0.07293361
u0 0.0830388
1.07293361
va x1 x0 u0 0.71696122.
xk 1
xk
uk
yk 1 yk vk ,
bu yerda
uk
zk 1 zk wk
15
2 yk
4
vk J (xk , yk , zk )1Fxk , yk , zk ; J (xk ) 2xk 15 1 .
wk
0
2 yk
25
Nyuton usuli iteratsiyalarining yaqinlashishini quyidagi jadvaldan ko‘rish mumkin:
n
|
xn
|
yn
|
zn
|
xn1 xn
|
0
|
1.00000000
|
0.80000000
|
0.90000000
|
|
1
|
1.07293361
|
0,71696122
|
0.90028552
|
0.073
|
2
|
1.07257038
|
0.71667586
|
0.90054497
|
3.610-4
|
3
|
1.07257037
|
0.71667585
|
0.90054497
|
8,0510-9
|
Bu yerda topilgan x3 yechim yetarlicha aniqlikda. Bu yerda ham
x3 x
x1 x0
1 q 0.073 1 0.9 0.533 , chunki
x3 x
10 .
Demak, ushbu misolni yechishda Nyuton usulining yaqinlashish tezligi oddiy it- eratsiyalar va Zeydel usullariga nisbatan ancha yuqori ekan.
4) Broyden usuli. Bu yerda ham Nyuton usulidagi kabi berilgan sistema uchun ushbu
F( x) F( x, y, z) ( f1( x, y, z), f2 ( x, y, z), f3 ( x, y, z))
15x y2 4z 13 0; x2 15y z 11 0; y2 25z 22
0T .
belgilashlarni yuqorida qabul qilgan edik, bu yerda
155
f1(x, y, z) 15x y2 4z 13 0,
f2
f
3
(x, y, z) x2 15y z 11 0, (x, y, z) y2 25z 22 0.
Boshlang‘ich yaqinlashishni x0 = (1.0, 0.8, 0,9)T deb olib, yechimni 10-5 aniq- likda topamiz.
Usul qoidalariga ko‘ra J(x) – Yakob matritsasini quyidagicha yozamiz:
15 2 y J (x, y, z) 2x 15
0 2 y
4
1 .
25
Ushbu x0 = (1.0, 0.8, 0,9) T boshlang‘ich yaqinlashish uchun
15
1.6
4
F(x0 ) (0.96, 1.1, 0.14)T va A0 = J (x0 ) 2
0
15
1.6
1 .
25
Endi tenglamaning yechimini quyidagicha izlaymiz:
1.07293361
Do'stlaringiz bilan baham: |