Giperbolik tipdagi ushbu — + — = 0 tenglama uchun (bunda F=F(u), masalan
dt dx
F=vu, a=aAt/Ax; g - o‘tish ko‘paytuvchishi):
■ Birinchi tartibli aniqlikka ega oshkor usul:
A
un+1 = un -
2Ax
t .(f+ - FA); g=1+ia sin(kAx).
Bu ayirmali sxema doimo noustivor.
L
■
■
aks usuli:
U+ = 1 fci+uh )-^- (fa - FA); g=cos(kAx)+iasin(kAx).
Bu ayirmali sxema AtLelevye usuli:
un+1 = u - — Vau) A - (au)n ] , agar an < 0 ; un+1 = un -—[(an)n - (an)n1 ] , agar an > 0; A” Ax
g=1-|a|+|a|cos(kAx)+iasin(kAx). Bu ayirmali sxema AtЛ
g=1-iasin(kAx)+a [cos(kAx)-1]. Bu ayirmali sxema At da ustivor.
va c:„2 =1 c(u"i: <);
L
■
■
Laks-Vendroffning ikki qadamli usuli:
At
<,n = \ (>c, + u )—A k:, - F,h);
u":1 = u" —
At
Ax
(jg n:1/2 rgn:1/2 ).
Fi:1/2 — Fi-1/2 /;
At
2
u":1 = u ——(f”i — F—1 ):-drr [Ci':1/2 (F"i — F,")— СП—1/2 (f" — F—1 )],
2Ax
2Ax
bu yerda C - yakobian; C
JF,
,V
Qu„
2
aks-Vendroffning bir qadamli usuli:
Л
g=1-iasin(kAx)+a [cos(kAx)-1]. Bu ayirmali sxema At
"—1 — — (F"i — F”i); g=ia sin(kAx)±J 1—a2sin2(kAx).
" —(1’5 :E)ftt (F "1 — F— ): (0,5 :e)-A(FI? — F-1).
■
■
u":1 = u"—1 —
Ax
Bu ayirmali sxema At
Kvaziikkinchi tartibli aniqlikka ega usul:
At
u":1 = u" —(1,5 :
«Sakrab qadamlash» usuli:
Bu ayirmali sxema a<0,5 da ustivor, agar s >0,25a2+0,5a4, ya’ni aynan AtA
agar s >
t 2a2 At 4 a4
4 Ax4 2 Ax
Parabolik tipdagi tenglama uchun oshkor konservativ usullar
Qu Q 2u
Parabolik tipdagi ushbu —:a—- = 0 (g - o‘tish ko‘paytuvchishi; p = aAt/ Ax2)
Qt Qx
tenglama uchun:
(u"+i — 2u" : u"_x); g=1 -4/kin2(kAx/2).
■
aAt
u":1 = u" :^A (u"+, — 2u" : un
Ax
Birinchi tartibli oshkor usul:
Л
Bu ayirmali sxema At<0,5Ax /a da ustivor.
■ Krank-Nikolson usuli:
"
aAt
2 Ax2 u :1
:1 " . aAt / ":1 — ":1 ":1 \ aAt t " " " V
ui = ui : 2Ax2 (ui:1 — 2ui : ui—1 ):^dJ Vi:1 — 2ui : ui—1);
Л Л
«Sakrab qadamlash» usuli:
(u"+x — 2u" :u*_x); g=-4^sin2(kAx/2)±^1 :16fi2 sin4(kAx/2).
Ax1
g
■
u":1 = u"—1: 2aAt \yh — 2u" : u"
■
Bu ayirmali sxema doimo noustivor.
Dyufor-Frankelning oshkor usuli:
1 — 2p
\
2P
,,":1 ,,"—1 i 2aAt i^,":1 \ .."—A i ,1* , ,w:1 1 2P ,,w—1 . 2P V
ui = u' :~A)F [ui:1 — (Л’ : u’ ): ui—1]; ui = 1 . о n> ui : T~WT> :1 : ui—1 /;
1: 2P.
1: 2p
=[1-2/fein (kAx/2)][ 1+2/kin (kAx/2)]. Bu ayirmali sxema doimo ustivor.
g = Y1jj 2ficos(kAx) ±y] 1—4^2sin2(kA)] . Bu ayirmali sxema doimo ustivor.
Mustaqil ish topshiriqlari
Quyida keltirilgan parabolik (1-jadval) va giperbolik (2-jadval) tipdagi xususiy hosilali differensial tenglamalar uchun boshlang‘ich chegaraviy masalalarni: oshkor ayirmali sxema bo‘yicha yeching; oshkormas ayirmali sxema bo‘yicha yeching.
Hosilalarni o‘z ichiga olgan chegaraviy shartlarni uch xil approksimatsiyalash: birinchi tartibli ikki nuqtali approksimatsiya; ikkinchi tartibli uch nuqtali approksimatsiya; ikkinchi tartibli ikki nuqtali approksimatsiya yo‘li bilan bajargan holda chegaraviy masalalarni yeching. Har xil vaqt momentlarida sonli yechim xatoligini berilgan analitik yechim bilan taqqoslagan holda aniqlang. Xatolikning to‘r parametrlari z, h lardan bog‘liqligini tadqiq qiling [2,4,5].
(1-jadval)
№
|
Тенглама
|
Boshlang‘ich shart
|
Chegaraviy shartlar
|
Analitik yechim
uanal(x,t)
|
1.
|
Cu C2 u
- a 2 > a > 0,
Ct Cx
|
u( x,0) — sin(2^x)
|
u(0, t) — 0; u(1, t) — 0
|
e~4^at sin(2^x)
|
2.
|
cu C2 u
a 2 > a > 0, Ct Cx
|
u( x,0) — x + sin(^x)
|
u(0, t) — 0; u(1, t) — 1
|
x + e- at sin(^r)
|
3.
|
cu d2 u
— a 2 > a > 0,
Ct Cx
|
u(x,0) — cos x
|
u(0, t) — exp (-at); u(n, t) — - exp (-at)
|
e~at cosx
|
4.
|
Cu C2 u
— a 2 > a > 0, Ct Cx
|
u( x,0) — sin x
|
ux (0, t) — exp (-at); ux (ж, t) — - exp (-at)
|
e~at sin x
|
5.
|
Ck C2u . . ,
~ = 2 + ^Чж)
Ct Cx
|
u(x,0) — 0
|
u(0, t) — 0; u(1, t) — 0
|
i 2
— (1 -e ж ‘)sin(^x) ж
|
6.
|
Ci C2u
— 9 +
Ct Cx2
+ cos x(cost + sin t)
|
u(x,0) — 0
|
u(0, t) — sin t; u (ж/2, t) — - sin t
|
sin t cos x
|
7.
|
Ci C2u
— 9 +
Ct Cx2
+ 0,5e~0,5t cos x
|
u( x,0) — sin x
|
ux (0, t) — exp(-0,5t); ux (ж, t) — - exp(-0,5t)
|
e~0,5t sin x
|
8.
|
Cu C2u — — a—- + cu, Ct Cx2
a > 0, c < 0
|
u( x,0) — sin x
|
ux (0, t) — exp((c - a)t); u(ж / 2, t) — exp ((c - a)t)
|
e(-a)t sin x
|
9.
|
Ch C2 u Ci
Ct - a & 2 + b C ’
a > 0, b > 0
|
u( x,0) — cos x
|
ux (0, t) - u(0, t) —
-e~at (cos(bt) + sin(bt)), ux (ж, t) - u^, t) —
e-t (cos(bt) + sin(bt))
|
e-t cos(x + bt)
|
10.
|
Cu C2 u Ci _ — a . + b + cu, Ct Cx2 Cc
a > 0, b > 0, c < 0
|
u( x,0) — sin x
|
ux (0, t) + u(0, t) —
e(c-a )l (cos(bt) + sin(bt)), ux (ж, t) + u (ж, t) —
-e(c-a)t (cos(bt) + sin(bt))
|
e(c-a)t sin(x + bt)
|
(2-jadval)
№
|
Тенглама
|
Boshlang‘ich shartlar
|
Chegaraviy
shartlar
|
Analitik yechim
uanal(x,t)
|
1.
|
d'2 u 9 d'2 u
a2 a ^2 ’
a > 0,
|
u(x,0) = sin x , ut (x,0) = —a cos x
|
u(0, t) = — sin( at), u(n, t) = sin( at)
|
sin( x — at)
|
2.
|
a2 u 9 а2 u a2 a ax2 ’
a > 0,
|
u( x,0) = sin x + cos x, ut (x,0) = —a(sin x + cos x )
|
ux (0, t) — u(0, t) = 0, ux (ж, t) — u(n, t) = 0
|
sin( x — at) + + cos(x + at)
|
3.
|
a2u a2u .
= , — 3u
at2 ax2
|
u( x,0) = 0, ut (x,0) = 2cos x.
|
u(0, t) = sin(2t)), м(ж, t) = — sin(2t),
|
cos x sin(2t)
|
4.
|
a2u a2u
—^ ^ - 5u
at 2 ax 2
|
u( x,0) = exp(2x ), ut (x,0) = 0.
|
ux (0, t) — 2u(0, t) = 0,
ux (1, t) — 2u(1, t) = 0,
|
e2x cost
|
5.
|
a2 u a2 u au at2 ax2 ax
|
u( x,0) = 0,
ut (x,0) = exp(—x ) sin x
|
u(0, t) = 0, w^, t) = 0,
|
|
Do'stlaringiz bilan baham: |